
AIWC: OpenCL based Architecture Independent Workload
Characterization

Author details omitted for review

ABSTRACT
OpenCL is an attractive programming model for high per-
formance computing systems composed of heterogeneous
compute devices, with wide support from hardware vendors
allowing portability of application codes. For accelerator
designers and HPC integrators, understanding the perfor-
mance characteristics of scientific workloads is of utmost
importance. However, if these characteristics are tied to
architectural features that are specific to a particular system,
they may not generalize well to alternative or future systems.
A architecture-independent method ensures an accurate char-
acterization of inherent program behavior, without bias due
to architectural-dependent features that vary widely between
different types of accelerators. This work presents the first
architecture-independent workload characterization frame-
work for heterogeneous compute platforms. The tool, AIWC,
is capable of characterizing OpenCL workloads currently in
use in the supercomputing setting, and is deployed as part
of the open source Oclgrind simulator. An evaluation of the
metrics collected over a subset of the Extended OpenDwarfs
Benchmark Suite is also presented.

1. INTRODUCTION
Cutting-edge high-performance computing (HPC) systems
are typically heterogeneous, with a single node comprising a
traditional CPU and an accelerator such as a GPU or many-
integrated-core device (MIC). High bandwidth, low latency
interconnects such as the CRAY XC50 Aries, Fujitsu Post-K
Tofu and IBM Power9 Bluelink, support tighter integration
between compute devices on a node. Some interconnects
support multiple different kinds of devices on a single node,
for example Bluelink features both NVLINK support for
Nvidia GPUs and CAPI for other emerging accelerators such
as DSPs, FPGAs and MICs.

The OpenCL programming framework is well-suited to such
heterogeneous computing environments, as a single OpenCL
code may be executed on multiple different device types.
When combined with autotuning, an OpenCL code may

exhibit good performance across varied devices. Spafford
et al. [16], Chaimov et al. [3] and Nugteren and Codreanu
[11] all propose open source libraries capable of performing
autotuning of dynamic execution parameters in OpenCL
kernels. Additionally, Price and McIntosh-Smith [13] have
demonstrated high performance using a general purpose
autotuning library [1], for three applications across twelve
devices.

Given a diversity of application codes and computational
capabilities of accelerators, optimal performance of each
code may vary between devices. Hardware designers and
HPC integrators would benefit from accurate and systematic
performance prediction for combinations of different codes
and accelerators, for example, in designing a HPC system,
to choose a mix of accelerators that is well-suited to the
expected workload.

To this end, we present the Architecture Independent Work-
load Characterization (AIWC) tool. AIWC simulates execu-
tion of OpenCL kernels to collect architecture-independent
features which characterize each code, and may also be used
in performance prediction. We demonstrate the use of AIWC
to characterize a variety of codes in the Extended OpenD-
warfs Benchmark Suite [7].

2. RELATED WORK
Oclgrind is an OpenCL device simulator developed by Price
and McIntosh-Smith [14] capable of performing simulated
kernel execution. It operates on a restricted LLVM IR known
as Standard Portable Intermediate Representation (SPIR)
[9], thereby simulating OpenCL kernel code in a hardware
agnostic manner. This architecture independence allows
the tool to uncover many portability issues when migrating
OpenCL code between devices. Additionally Oclgrind comes
with a set of tools to detect runtime API errors, race condi-
tions and invalid memory accesses, and generate instruction
histograms. AIWC is added as a tool to Oclgrind and lever-
ages its ability to simulate OpenCL device execution using
LLVM IR codes.

AIWC relies on the selection of the instruction set archi-
tecture (ISA)-independent features determined by Shao
and Brooks [15], which in turn builds on earlier work in
microarchitecture-independent workload characterization.
Hoste and Eeckout [6] show that although conventional
microarchitecture-dependent characteristics are useful
in locating performance bottlenecks [5], they are mis-

leading when used as a basis on which to differentiate
benchmark applications. Microarchitecture-independent
workload characterization and the associated analysis
tool, known as MICA, was proposed to collect metrics
to characterize an application independent of particular
microarchitectural characteristics. Architecture-dependent
characteristics typically include instructions per cycle
(IPC) and miss rates – cache, branch misprediction and
translation look-aside buffer (TLB) – and are collected
from hardware performance counter results, typically
PAPI. However, these characteristics fail to distinguish
between inherent program behavior and its mapping to
specific hardware features, ignoring critical differences
between architectures such as pipeline depth and cache
size. The MICA framework collects independent features
including instruction mix, instruction-level parallelism (ILP),
register traffic, working-set size, data stream strides and
branch predictability. These feature results are collected
using the Pin [10] binary instrumentation tool. In total
47 microarchitecture-independent metrics are used to
characterize an application code. To simplify analysis and
understanding of the data, the authors combine principal
component analysis with a genetic algorithm to select eight
metrics which account for approximately 80% of the variance
in the data set.

A caveat in the MICA approach is that the results presented
are not ISA-independent nor independent from differences
in compilers. Additionally since the metrics collected rely
heavily on Pin instrumentation, characterization of multi-
threaded workloads or accelerators are not supported. As
such, it is unsuited to conventional supercomputing work-
loads which make heavy use of parallelism and accelerators.

Shao and Brooks have since extended the generality of the
MICA to be ISA independent. The primary motivation for
this work was in evaluating the suitability of benchmark
suites when targeted on general purpose accelerator plat-
forms. The proposed framework briefly evaluates eleven
SPEC benchmarks and examines 5 ISA-independent fea-
tures/metrics. Namely, number of opcodes (e.g., add, mul),
the value of branch entropy – a measure of the randomness
of branch behavior, the value of memory entropy – a met-
ric based on the lack of memory locality when examining
accesses, the unique number of static instructions, and the
unique number of data addresses.

Related to the paper, Shao also presents a proof of concept
implementation (WIICA) which uses an LLVM IR Trace
Profiler to generate an execution trace, from which a python
script collects the ISA independent metrics. Any results
gleaned from WIICA are easily reproducible, the execution
trace is generated by manually selecting regions of code built
from the LLVM IR Trace Profiler. Unfortunately, use of
the tool is non-trivial given the complexity of the tool chain
and the nature of dependencies (LLVM 3.4 and Clang 3.4).
Additionally, WIICA operates on C and C++ code, which
cannot be executed directly on any accelerator device aside
from the CPU. Our work extends this implementation to the
broader OpenCL setting to collect architecture independent
metrics from a hardware-agnostic language – OpenCL.

The branch entropy measure used by Shao and Brooks [15]

was initially proposed by Yokota [17] and uses Shannon’s
information entropy to determine a score of Branch History
Entropy. De Pestel, Eyerman and Eeckhout [4] proposed
an alternative metric, average linear branch entropy metric,
to allow accurate prediction of miss rates across a range
of branch predictors. As their metric is more suitable for
architecture-independent studies, we adopt it for this work.

Caparrós Cabezas and Stanley-Marbell [2] present a frame-
work for characterizing instruction- and thread-level par-
allelism, thread parallelism, and data movement, based on
cross-compilation to a MIPS-IV simulator of an ideal machine
with perfect caches and branch prediction and unlimited func-
tional units. Instruction- and thread-level parallelism are
identified through analysis of data dependencies between
instructions and basic blocks. The current version of AIWC
does not perform dependency analysis for characterizing par-
allelism, however, we hope to include such metrics in future
versions.

3. METRICS
For each OpenCL kernel invocation the Oclgrind simulator
AIWC tool collects a set of metrics, which are listed in
Table 1.

The Opcode, total memory footprint and 90% mem-
ory footprint measures are simple counts. Likewise, Total
Instruction Count is the number of instructions achieved
during a kernel execution. The global memory address
entropy is an positive real number that corresponds to the
randomness of memory addresses accessed. The local mem-
ory address entropy is computed as 10 separate values
according to increasing number of Least Significant Bits
(LSB), or low order bits, omitted in calculation. The num-
ber of bits skipped ranges from 1 to 10, and a steeper drop
in entropy with increasing number of bits indicates greater
spatial locality in the address stream.

Both unique branch instructions and the associated 90%
branch instructions are counts indicating the count of logi-
cal control flow branches encountered during kernel execution.
Yokota branch entropy ranges between 0 and 1, and of-
fers an indication of a program’s predictability as a floating
point entropy value. The average linear branch entropy
metric is proportional to the miss rate in program execution;
p = 0 for branches always taken or not-taken but p = 0.5 for
the most unpredictable control flow. All branch-prediction
metrics were computed using a fixed history of 16-element
branch strings, each of which is composed of 1-bit branch
results (taken/not-taken).

As the OpenCL programming model is targeted at parallel
architectures, any workload characterization must consider
exploitable parallelism and associated communication and
synchronization costs. We characterize thread-level paral-
lelism (TLP) by the number of work-items executed by
each kernel, which indicates the maximum number of threads
that can be executed concurrently.

Work-item communication hinders TLP, and in the OpenCL
setting takes the form of either local communication (within a
work-group) using local synchronization (barriers) or globally
by dividing the kernel and invoking the smaller kernels on

Table 1: AIWC tool metrics.

Type Metric Description
Compute opcode # of unique opcodes required to cover 90% of dynamic instructions
Compute Total Instruction Count Total # of instructions executed
Parallelism Work-items # of work-items or threads executed
Parallelism Total Barriers Hit maximum # of instructions executed until a barrier
Parallelism Min ITB minimum # of instructions executed until a barrier
Parallelism Max ITB maximum # of instructions executed until a barrier
Parallelism Median ITB median # of instructions executed until a barrier
Parallelism Max SIMD Width maximum number of data items operated on during an instruction
Parallelism Mean SIMD Width mean number of data items operated on during an instruction
Parallelism SD SIMD Width standard deviation across the number of data items affected
Memory Total Memory Footprint # of unique memory addresses accessed
Memory 90% Memory Footprint # of unique memory addresses that cover 90% of memory accesses
Memory Global Memory Address Entropy measure of the randomness of memory addresses
Memory Local Memory Address Entropy measure of the spatial locality of memory addresses
Control Total Unique Branch Instructions # unique branch instructions
Control 90% Branch Instructions # unique branch instructions that cover 90% of branch instructions
Control Yokota Branch Entropy branch history entropy using Shannon’s information entropy
Control Average Linear Branch Entropy branch history entropy score using the average linear branch entropy

the command queue. Both local and global synchronization
can be measured in instructions to barrier by performing
a running tally of instructions executed per work-item until
a barrier is encountered under which the count is saved and
resets; this count will naturally include the final (implicit)
barrier at the end of the kernel. Min, Max and Median
ITB are reported to understand synchronization overheads
as well as load imbalance, as a large difference between min
and max ITB may indicate an irregular workload.

To characterize data parallelism, we examine the number
and width of vector operands in the generated LLVM IR,
reported as Max SIMD Width, Mean SIMD Width
and SD SIMD Width. Some of the other metrics are
highly dependent on workload scale, so work-items may
be used to normalize between different scales. For example,
total memory footprint can be divided by work-items
to give the total memory footprint per work-item, which
indicates the memory required per processing element.

4. METHODOLOGY – WORKLOAD
CHARACTERIZATION BY TOOLING
OCLGRIND

AIWC verifies the architecture independent metrics since
they are collected on a tool chain and in a language actively
executed on a wide range of accelerators – the OpenCL
runtime supports execution on CPU, GPU, DSP, FPGA,
MIC and ASIC hardware architectures. The intermediate
representation of the OpenCL kernel code is a subset of
LLVM IR known as SPIR-V – Standard Portable Intermedi-
ate Representation. This IR forms a basis for Oclgrind to
perform OpenCL device simulation which interprets LLVM
IR instructions.

Migrating the metrics presented in the ISA-independent
workload characterization paper [15] to the Oclgrind tool
offers a accessible, high-accuracy and reproducible method
to acquire these AIWC features. Namely:

• Accessibility: since the Oclgrind OpenCL kernel debug-
ging tool is one of the most adopted OpenCL debug-
ging tools freely available to date, having AIWC metric
generation included as a Oclgrind plugin allows rapid
workload characterization.

• High-Accuracy: evaluating the low level optimized IR
does not suffer from a loss of precision since each in-
struction is instrumented during its execution in the
simulator, unlike with the conventional metrics gener-
ated by measuring architecture driven events – such as
PAPI and MICA analysis.

• Reproducibility: each instruction is instrumented by
the AIWC tool during execution, there is no variance
in the metric results presented between OpenCL kernel
runs.

The caveat with this approach is the overhead imposed by
executing full solution HPC codes on a slower simulator
device. However, since AIWC metrics do not vary between
runs, this is still a shorter execution time than the typical
number of iterations required to get a reasonable statistical
sample when compared to a MICA or architecture dependent
analysis.

5. IMPLEMENTATION
AIWC is implemented as a plugin for Oclgrind, which simu-
lates kernel execution on an ideal compute device. OpenCL
kernels are executed in series, and Oclgrind generates notifica-
tion events which AIWC handles to populate data structures
for each workload metric. Once each kernel has completed
execution, AIWC performs statistical summaries of the col-
lected metrics by examining these data structures.

The Opcode diversity metric updates a counter on an un-
ordered map during each workItemBegin event, the type of
operation is determined by examining the opcode name using
the LLVM Instruction API.

The number of work-items is computed by incrementing a
global counter – accessible by all work-item threads – once a

workItemBegin notification event occurs.

TLP metrics require barrier events to be instrumented
within each thread. Instructions To Barrier ITB metrics
require each thread to increment a local counter once every
instructionExecuted has occurred, this counter is added
to a vector and reset once the work-item encounters a
barrier. The Total Barriers Hit counter also increments
on the same condition. Work-items are executed sequentially
within all work-items in a work-group, if a barrier is hit the
queue moves onto all other available work-items in a ready
state. Collection of the metrics post barrier resumes during
the workItemClearBarrier event.

ILP SIMD metrics examine the size of the result variable
provided from the instructionExecuted notification, the
width is then added to a vector for the statistics to be
computed once the kernel execution has completed.

Total Memory Footprint 90% Memory Footprint
and Local Memory Address Entropy LMAE metrics
require the address accessed to be stored during kernel
execution and occurs during the memoryLoad, memoryStore,
memoryAtomicLoad and memoryAtomicStore notifications.

Branch entropy measurements require a check during
instructionExecuted event on whether the instruction
is a branch instruction, if so a flag indicating a branch
operation has occurred is set and both LLVM IR labels
– which correspond to branch targets – are recorded. On
the next instructionExecuted the flag is queried and reset
while the current instruction label is examined and is stored
around which of the two targets were taken. The branch
metrics can then be computed. The Total Unique Branch
Instructions is a count of the absolute number of unique
locations that branching occurred, while the 90% Branch
Instructions indicates the number of unique branch
locations that cover 90% of all branches. Yokota from Shao
[15], and Average Linear Branch Entropy, from De
Pestel [4] and have been computed and are also presented
based on this implementation. workGroupComplete events
trigger the collection of the intermediate work-item and
work-group counter variables to be added to the global suite,
while workGroupBegin events reset all the local/intermediate
counters.

Finally, kernelBegin initializes the global counters and
kernelEnd triggers the generation and presentation of all
the statistics listed in Table 1. The source code is available
at the GitHub Repository [8].

6. DEMONSTRATION
We now demonstrate the use of AIWC with a few exam-
ple scientific application kernels selected from the Extended
OpenDwarfs Benchmark Suite [7]. These benchmarks were
extracted from and are representative of general scientific
application codes. Our selection is not intended to be ex-
haustive, rather, it is meant to illustrate how key properties
of the codes are reflected in the metrics collected by AIWC.

AIWC is run on full application codes, but it is difficult to
present an entire summary due to the nature of OpenCL.
Computationally intensive kernels are simply selected regions

of the full application codes and are invoked separately for
device execution. As such, the AIWC metrics can either
be shown per kernel run on a device, for all kernel runs on
the device, or as the summation of all metrics for a kernel
for a full application at a given problem size – we chose the
latter. Additionally, given the number of kernels presented we
believe AIWC will generalise to full codes in other domains.

We present metrics for 11 different application codes – which
includes 37 kernels in total. Each code was run with four
different problem sizes, called tiny, small, medium and
large in the Extended OpenDwarfs Benchmark Suite; these
correspond respectively to problems that would fit in the
L1, L2 and L3 cache or main memory of a typical current-
generation CPU architecture. As simulation within Oclgrind
is deterministic, all results presented are for a single run for
each combination of code and problem size.

In a cursory breakdown 4 selected metrics are presented in
Figure~1. Each of the 4 metrics were chosen as one of each
of the main categories, namely, Opcode, Barriers Per In-
struction, Global Memory Address Entropy, Branch Entropy
(Linear Average). Each category has also been segmented
by colour: blue results represent compute metrics, green
represent metrics that indicate parallelism, beige represents
memory metrics and purple bars represent control metrics.
Median results are presented for each metric – while there is
no variation between invocations of AIWC, certain kernels
are iterated multiple times and over differing domains / data
sets. Each of the 4 sub-figures shows all kernels over the over
4 different sized problems.

All kernels are presented along the x-axis, whereas the nor-
malized percentage of each category is presented in the y-axis.

Generally, problem size primarily affects the memory cate-
gory – where global memory address entropy increases with
problem size – while the generic shape of the other cat-
egories is fixed per kernel. Note, there are fewer kernels
presented over the medium and large problem sizes due to
the difficulties in determining arguments and the ability of
some benchmark applications to run correctly over the larger
problem sizes.

Following Shao and Brooks [15], we present the AIWC
metrics for a kernel as a kiviat or radar diagram, for each
of the problem sizes. Unlike Shao and Brooks, we do
not perform any dimensionality reduction, but choose to
present all collected metrics. The ordering of the individual
spokes is not chosen to reflect any statistical relation
between the metrics, however, they have been grouped
into four main categories: green spokes represent metrics
that indicate parallelism, blue spokes represent compute
metrics, beige spokes represent memory metrics and purple
spokes represent control metrics. For clarity of visualization,
we do not present the raw AIWC metrics, but instead
normalize or invert the metrics to produce a scale from
0 to 1. The parallelism metrics presented are the inverse
values of the metrics collected by AIWC, i.e. granu-
larity = 1/work-items ; barriers per instruction
= 1/mean ITB ; instructions per operand =
1/

∑
SIMD widths. All other values are normalized

according to the maximum value measured across all kernels

inv
er

t_
m

ap
pin

g

km
ea

ns
Poin

t

ca
lc_

po
te

nt
ial

_s
ing

le_
ste

p_
de

v

lud
_d

iag
on

al

lud
_in

te
rn

al

lud
_p

er
im

et
er

cs
r
fft

Rad
ix1

6K
er

ne
l

fft
Rad

ix8
Ker

ne
l

c_
Cop

yS
rc

To
Com

po
ne

nt
s

cl_
fd

wt5
3K

er
ne

l

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

ke
rn

el1

ke
rn

el2

ac
c_

b_
de

v

ca
lc_

alp
ha

_d
ev

ca
lc_

be
ta

_d
ev

ca
lc_

ga
m

m
a_

de
v

ca
lc_

xi_
de

v

es
t_

a_
de

v

es
t_

b_
de

v

es
t_

pi_
de

v

ini
t_

alp
ha

_d
ev

ini
t_

be
ta

_d
ev

ini
t_

on
es

_d
ev

m
vm

_n
on

_k
er

ne
l_n

aiv
e

m
vm

_t
ra

ns
_k

er
ne

l_n
aiv

e

sc
ale

_a
_d

ev

sc
ale

_a
lph

a_
de

v

sc
ale

_b
_d

ev

s_
do

t_
ke

rn
el_

na
ive

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

ne
ed

le_
op

en
cl_

sh
ar

ed
_2

cr
c3

2_
sli

ce
8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Kernel

N
or

m
al

is
ed

 C
ou

nt
 (

%
)

inv
er

t_
m

ap
pin

g

km
ea

ns
Poin

t

ca
lc_

po
te

nt
ial

_s
ing

le_
ste

p_
de

v

lud
_d

iag
on

al

lud
_in

te
rn

al

lud
_p

er
im

et
er

cs
r
fft

Rad
ix1

6K
er

ne
l

fft
Rad

ix4
Ker

ne
l

c_
Cop

yS
rc

To
Com

po
ne

nt
s

cl_
fd

wt5
3K

er
ne

l

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

ke
rn

el1

ke
rn

el2

ac
c_

b_
de

v

ca
lc_

alp
ha

_d
ev

ca
lc_

be
ta

_d
ev

ca
lc_

ga
m

m
a_

de
v

ca
lc_

xi_
de

v

es
t_

a_
de

v

es
t_

b_
de

v

es
t_

pi_
de

v

ini
t_

alp
ha

_d
ev

ini
t_

be
ta

_d
ev

ini
t_

on
es

_d
ev

m
vm

_n
on

_k
er

ne
l_n

aiv
e

m
vm

_t
ra

ns
_k

er
ne

l_n
aiv

e

sc
ale

_a
_d

ev

sc
ale

_a
lph

a_
de

v

sc
ale

_b
_d

ev

s_
do

t_
ke

rn
el_

na
ive

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

ne
ed

le_
op

en
cl_

sh
ar

ed
_2

cr
c3

2_
sli

ce
8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Kernel

N
orm

alised C
ount (%

)

Tiny Small

inv
er

t_
m

ap
pin

g

km
ea

ns
Poin

t

ca
lc_

po
te

nt
ial

_s
ing

le_
ste

p_
de

v

lud
_d

iag
on

al

lud
_in

te
rn

al

lud
_p

er
im

et
er cs

r

fft
Rad

ix1
6K

er
ne

l

fft
Rad

ix8
Ker

ne
l

c_
Cop

yS
rc

To
Com

po
ne

nt
s

cl_
fd

wt5
3K

er
ne

l

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

ke
rn

el1

ke
rn

el2

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

ne
ed

le_
op

en
cl_

sh
ar

ed
_2

cr
c3

2_
sli

ce
8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Kernel

N
or

m
al

is
ed

 C
ou

nt
 (

%
)

inv
er

t_
m

ap
pin

g

km
ea

ns
Poin

t

lud
_d

iag
on

al

lud
_in

te
rn

al

lud
_p

er
im

et
er cs

r

fft
Rad

ix1
6K

er
ne

l

fft
Rad

ix2
Ker

ne
l

c_
Cop

yS
rc

To
Com

po
ne

nt
s

cl_
fd

wt5
3K

er
ne

l

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

ke
rn

el1

ke
rn

el2

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

ne
ed

le_
op

en
cl_

sh
ar

ed
_2

cr
c3

2_
sli

ce
8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Kernel

N
orm

alised C
ount (%

)

 Medium Large

Metric Opcode Barriers Per Instruction Global Memory Address Entropy Branch Entropy (Linear Average)

Figure 1: Selected AIWC metrics from each category over all kernels and 4 problem sizes.

0

0.25

0.5

0.75

1

Opcode

Granularity

Barriers Per Instruction

Instructions Per Operand

Total Memory
Footprint

90% Memory
Footprint

Global Memory
Address Entropy

LMAE −−
Skipped 1 LSBs

LMAE −−
Skipped
2 LSBs

LMAE −−
Skipped 3 LSBs

LMAE −−
Skipped 4 LSBs

LMAE −−
Skipped 5

 LSBs

LMAE −−
Skipped 6

 LSBs

LMAE −−
Skipped 7 LSBs

LMAE −−
Skipped 8 LSBs

LMAE −−
Skipped 9 LSBs

LMAE −−
Skipped 10

 LSBs

Total Unique
Branch Instructions

90% Branch
Instructions

Branch Entropy
(Yokota)

Branch Entropy
(Average Linear)

tiny
small
medium
large

A) LUD Diagonal

0

0.25

0.5

0.75

1

Opcode

Granularity

Barriers Per Instruction

Instructions Per Operand

Total Memory
Footprint

90% Memory
Footprint

Global Memory
Address Entropy

LMAE −−
Skipped 1 LSBs

LMAE −−
Skipped
2 LSBs

LMAE −−
Skipped 3 LSBs

LMAE −−
Skipped 4 LSBs

LMAE −−
Skipped 5

 LSBs

LMAE −−
Skipped 6

 LSBs

LMAE −−
Skipped 7 LSBs

LMAE −−
Skipped 8 LSBs

LMAE −−
Skipped 9 LSBs

LMAE −−
Skipped 10

 LSBs

Total Unique
Branch Instructions

90% Branch
Instructions

Branch Entropy
(Yokota)

Branch Entropy
(Average Linear)

tiny
small
medium
large

B) LUD Internal

0

0.25

0.5

0.75

1

Opcode

Granularity

Barriers Per Instruction

Instructions Per Operand

Total Memory
Footprint

90% Memory
Footprint

Global Memory
Address Entropy

LMAE −−
Skipped 1 LSBs

LMAE −−
Skipped
2 LSBs

LMAE −−
Skipped 3 LSBs

LMAE −−
Skipped 4 LSBs

LMAE −−
Skipped 5

 LSBs

LMAE −−
Skipped 6

 LSBs

LMAE −−
Skipped 7 LSBs

LMAE −−
Skipped 8 LSBs

LMAE −−
Skipped 9 LSBs

LMAE −−
Skipped 10

 LSBs

Total Unique
Branch Instructions

90% Branch
Instructions

Branch Entropy
(Yokota)

Branch Entropy
(Average Linear)

tiny
small
medium
large

 C) LUD Perimeter

● ●

●

●

●

● ● ●

●

●

● ●

●

●

●

● ● ●

●

●

● ●

●

●

●

● ● ●

●

●

● ●

●

●

●

● ● ●

●

●

0

2

4

6

8

10

12

2 4 6 8 10
of Bits Skipped

M
em

or
y

A
dd

re
ss

 L
oc

al
 E

nt
ro

py

Invocation #
●

●

●

●

0
1
2
3

D) LUD Perimeter LMAE on tiny

Figure 2: A) B) and C) show the AIWC features of the diagonal, internal and perimeter kernel of the LUD application
over all problem sizes. D) shows the corresponding Local Memory Address Entropy for the perimeter kernel over the tiny
problem size.

examined – and on all problem sizes. This presentation
allows a quick value judgement between kernels, as values
closer to the center (0) generally have lower hardware
requirements, for example, smaller entropy scores indicate
more regular memory access or branch patterns, requiring
less cache or branch predictor hardware; smaller granularity
indicates higher exploitable parallelism; smaller barriers per
instruction indicates less synchronization; and so on.

The lud benchmark application comprises three major ker-
nels, diagonal, internal and perimeter, corresponding to
updates on different parts of the matrix. The AIWC metrics
for each of these kernels are presented – superimposed over
all problem sizes – in Figure~2 A) B) and C) respectively.
Comparing the kernels, it is apparent that the diagonal and
perimeter kernels have a large number of branch instructions
with high branch entropy, whereas the internal kernel has
few branch instructions and low entropy. This is borne out
through inspection of the OpenCL source code: the internal
kernel is a single loop with fixed bounds, whereas diagonal
and perimeter kernels contain doubly-nested loops over tri-
angular bounds and branches which depend on thread id.
Comparing between problem sizes (moving across the page),
the large problem size shows higher values than the tiny
problem size for all of the memory metrics, with little change
in any of the values.

The visual representation provided from the kiviat diagrams
allows the characteristics of OpenCL kernels to be readily
assessed and compared.

Finally, we examine the linear memory access entropy
(LMAE) presented in the kiviat diagrams in greater detail.
Figure~2 D) presents a sample of the linear memory access
entropy, in this instance of the LUD Perimeter kernel
collected over the tiny problem size. The kernel is launched
4 separate times during a run of the tiny problem size, this
is application specific and in this instance each successive
invocation operates on a smaller data set per iteration.
Note there is steady decrease in starting entropy, and each
successive invocation of the LU Decomposition Perimeter
kernel the lowers the starting entropy. However the descent
in entropy – which corresponds to more bits being skipped,
or bigger the strides or the more localized the memory
access – shows that the memory access patterns are the
same regardless of actual problem size.

7. CONCLUSIONS AND FUTURE WORK
We have presented the Architecture-Independent Workload
Characterization tool (AIWC), which supports the collection
of architecture-independent features of OpenCL application
kernels. These features can be used to predict the most
suitable device for a particular kernel, or to determine the
limiting factors for performance on a particular device, allow-
ing OpenCL developers to try alternative implementations
of a program for the available accelerators – for instance,
by reorganizing branches, eliminating intermediate variables
et cetera. The additional architecture independent charac-
teristics of a scientific workload will be beneficial to both
accelerator designers and computer engineers responsible for
ensuring a suitable accelerator diversity for scientific codes
on supercomputer nodes.

Caparrós Cabezas and Stanley-Marbell [2] examine the Berke-
ley dwarf taxonomy by measuring instruction-level paral-
lelism, thread parallelism, and data movement. They pro-
pose a sophisticated metric to assess ILP by examining the
data dependency graph of the instruction stream. Similarly,
Thread-Level-Parallelism was measured by analysing the
block dependency graph. Whilst we propose alternative met-
rics to evaluate ILP and TLP – using the max, mean and
standard deviation statistics of SIMD width and the total
barriers hit and Instructions To Barrier metrics respectively –
a quantitative evaluation of the dwarf taxonomy using these
metrics is left as future work. We expect that the additional
AIWC metrics will generate a comprehensive feature-space
representation which will permit cluster analysis and com-
parison with the dwarf taxonomy.

References
[1] Ansel, J. et al. 2014. OpenTuner: An extensible frame-
work for program autotuning. International conference on
parallel architectures and compilation techniques (PACT)
(Edmonton, Canada, August 2014).

[2] Caparrós Cabezas, V. and Stanley-Marbell, P. 2011. Par-
allelism and data movement characterization of contemporary
application classes. Proceedings of the twenty-third annual
ACM symposium on parallelism in algorithms and architec-
tures (New York, NY, USA, 2011), 95–104.

[3] Chaimov, N. et al. 2014. Toward multi-target autotuning
for accelerators. IEEE international conference on parallel
and distributed systems (ICPADS) (2014), 534–541.

[4] De Pestel, S. et al. 2017. Linear branch entropy:
Characterizing and optimizing branch behavior in a
micro-architecture independent way. IEEE Transac-
tions on Computers. 66, 3 (Mar. 2017), 458–472.
DOI:https://doi.org/10.1109/TC.2016.2601323.

[5] Ganesan, K. et al. 2008. A performance counter based
workload characterization on Blue Gene/P. International
conference on parallel processing (ICPP) (2008), 330–337.

[6] Hoste, K. and Eeckhout, L. 2007. Microarchitecture-
independent workload characterization. IEEE Micro. 27, 3
(2007).

[7] Johnston, B. and Milthorpe, J. 2017. Dwarfs on accelera-
tors: Extending OpenCL benchmarking for heterogeneous
computing architectures. unpublished. (2017).

[8] Johnston, B. et al. 2017. BeauJoh/Oclgrind: Adding
AIWC – An Architecture Independent Workload Characteri-
sation Plugin. https://doi.org/10.5281/zenodo.1134175.

[9] Kessenich, J. 2015. A Khronos-Defined Intermediate
Language for Native Representation of Graphical Shaders
and Compute Kernels.

[10] Luk, C.-K. et al. 2005. Pin: Building customized
program analysis tools with dynamic instrumentation. ACM
SIGPLAN notices (2005), 190–200.

[11] Nugteren, C. and Codreanu, V. 2015. CLTune: A

https://doi.org/10.1109/TC.2016.2601323

generic auto-tuner for OpenCL kernels. IEEE international
symposium on embedded multicore/many-core systems-on-
chip (MCSoC) (2015), 195–202.

[12] Prakash, T.K. and Peng, L. 2008. Performance charac-
terization of SPEC CPU2006 benchmarks on Intel Core 2
Duo processor. ISAST Trans. Comput. Softw. Eng. 2, 1
(2008), 36–41.

[13] Price, J. and McIntosh-Smith, S. 2017. Analyzing and
improving performance portability of OpenCL applications
via auto-tuning. Proceedings of the 5th international work-
shop on OpenCL (2017), 14.

[14] Price, J. and McIntosh-Smith, S. 2015. Oclgrind: An
extensible OpenCL device simulator. Proceedings of the 3rd
international workshop on OpenCL (2015), 12.

[15] Shao, Y.S. and Brooks, D. 2013. ISA-independent work-
load characterization and its implications for specialized ar-
chitectures. IEEE international symposium on performance
analysis of systems and software (ISPASS) (2013), 245–255.

[16] Spafford, K. et al. 2010. Maestro: Data orchestration
and tuning for OpenCL devices. Euro-Par 2010-Parallel
Processing. (2010), 275–286.

[17] Yokota, T. et al. 2007. Introducing entropies for repre-
senting program behavior and branch predictor performance.
Proceedings of the 2007 workshop on experimental computer
science (2007), 17.

	Introduction
	Related Work
	Metrics
	Methodology – Workload Characterization by tooling Oclgrind
	Implementation
	Demonstration
	Conclusions and Future Work
	References

