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Abstract—A performance-portable application can run on a
variety of different hardware platforms, achieving an acceptable
level of performance without requiring significant rewriting
for each platform. Several performance-portable programming
models are now suitable for high-performance scientific appli-
cation development, including OpenMP and Kokkos. Chapel is
a parallel programming language that supports the productive
development of high-performance scientific applications and has
recently added support for GPU architectures through native
code generation.

Using three mini-apps – BabelStream, miniBUDE, and TeaLeaf
– we evaluate the Chapel language’s performance portability
across various CPU and GPU platforms. In our evaluation, we
replicate and build on previous studies of performance portability
using mini-apps, comparing Chapel against OpenMP, Kokkos,
and the vendor programming models CUDA and HIP. We find
that Chapel achieves comparable performance portability to
OpenMP and Kokkos and identify several implementation issues
that limit Chapel’s performance portability on certain platforms.

Index Terms—performance portability, Chapel language, mini-
app, parallel programming, general-purpose GPU programming

I. INTRODUCTION

Chapel is a parallel programming language that supports
productive parallel application development on a wide range
of computing platforms. Chapel has been used in a range of
high-performance scientific applications, including interactive
data exploration [1], multi-physics computational fluid dynam-
ics [2], and computational astrophysics [3]. Notably, Chapel
supports compilation from a single source file to multiple tar-
get architectures, including CPUs and GPUs. This is achieved
through the LLVM compiler framework, which allows Chapel
code generation to target a diverse range of back-ends, such
as PTX for NVIDIA GPUs and AMDGCN for AMD GPUs.
Chapel’s first-class language features for data parallelism, for
example, the forall parallel loop, are compiled to GPU ker-
nels, with associated host-side code for memory management,
kernel launch, and synchronization [4]. While some Chapel
language features are not currently supported for GPU, the
breadth and quality of support have increased rapidly in recent
releases [5]. It is now appropriate to compare Chapel with

other heterogeneous programming models that allow single-
source programming for diverse hardware platforms.

We seek to answer the question: how well does Chapel
support the development of performance-portable application
codes compared to more widely-used programming models
like OpenMP and Kokkos? Performance portability reflects
the notion that an application code should not only be
portable to a range of different hardware platforms (without
requiring rewriting for each new platform) but should also
achieve an acceptable level of performance on each platform
(without platform-specific optimizations). Deakin et al. [6]
compared the performance portability of the OpenMP and
Kokkos programming models by using them to write parallel
implementations of a set of five mini-apps, each of which
represents a key computational pattern common to high-
performance scientific computing applications. In a later study,
Deakin et al. [7] included SYCL, considering the performance
portability of these heterogeneous programming models on
CPU platforms only. In this study, we build on their work
by undertaking a comparison of Chapel, OpenMP, Kokkos,
CUDA, and HIP programming models across of diverse set of
hardware platforms. Our contributions are as follows:

• We present the first performance portability study of
the Chapel language across a diverse set of computing
architectures, including CPUs (Intel, AMD, and ARM)
and GPUs (NVIDIA and AMD).

• We replicate and update the published results of Deakin
et al. [6]–[10] for the BabelStream, miniBUDE, and
TeaLeaf mini-apps on a range of CPU and GPU platforms
and present new results for modern AMD GPUs.

• We identify several implementation issues that limit the
performance portability of Chapel on these platforms.

II. MINI-APPLICATIONS IN CHAPEL

We used the Chapel language to create new implementations
of three mini-apps developed by the University of Bristol’s
High Performance Computing research group. These mini-
apps have been used extensively to compare parallel pro-
gramming models and already have idiomatic implementations
in OpenMP, Kokkos, CUDA, and HIP. The mini-applications
differ in the computational patterns used and, accordingly, in



the language features used to implement them in Chapel and
other programming models.

A. BabelStream

BabelStream [8] is an update of McCalpin’s Stream memory
bandwidth benchmark [11], comprising the four kernels from
the original benchmark plus a dot product reduction and a
modified version of the triad kernel following the Nstream
benchmark from Intel’s Parallel Research Kernels [12]. In
this study, we report memory bandwidth for the stream triad
kernel, which computes A = B+α∗C for arrays A,B,C. In
the CUDA and HIP implementations of BabelStream, each
triad of corresponding elements is processed by a single
thread, while in the OpenMP and Kokkos versions, data-
parallel loops are used (#pragma omp parallel for
and Kokkos::parallel_for). In the Chapel implemen-
tation of BabelStream1, we use a data-parallel forall loop
as follows:
forall i in vectorDom do

A[i] = B[i] + scalar * C[i];

On CPU platforms, this loop is decomposed into multiple
chunks to be processed by Chapel worker threads; on the GPU,
it is compiled to PTX (NVIDIA) or GCN (AMD) instructions
for each GPU thread to process a triad of elements. Chapel
also generates the host-side code necessary to launch and
synchronize device kernels. Note that the Chapel, OpenMP,
and Kokkos versions of BabelStream work for arrays of any
size, whereas the CUDA and HIP codes are restricted to array
sizes that are an exact multiple of the GPU thread block size.
Because of this restriction, the CUDA and HIP kernels avoid
checking thread ID against the array upper bound, which may
result in a higher achieved bandwidth.

In initial testing with Chapel, we noticed a marked reduction
in bandwidth of up to 60% on AMD GPUs due to the cost of
kernel launch. Chapel allows launching multiple GPU kernels
in parallel from separate asynchronous tasks, which the current
Chapel implementation supports by default by creating a sep-
arate GPU stream per task. This creates unnecessary overhead
for applications like those in the current study, which launch
only a single GPU kernel at a time. There was also a small,
but statistically significant reduction in bandwidth of less than
2% on NVIDIA GPUs, where the cost of creating separate
GPU streams appears to be significantly less. However, the
Chapel runtime also supports a single-stream mode in which
all GPU kernels are launched on the default stream; we used
this mode for all performance results reported in Section III.

B. miniBUDE

miniBUDE [10] is a mini-app created from BUDE [13],
a protein docking simulator for drug discovery developed at
Bristol University. The miniBUDE kernel computes the energy
calculated from each ligand-protein pair and each different
position and rotation (i.e. pose) of the ligand. The mini-app
is highly arithmetically intensive, making significant use of

1https://github.com/milthorpe/BabelStream

single-precision arithmetic and trigonometric functions. The
main computational kernel is a triple loop nest over proteins,
ligands, and poses, which provides ample opportunities for
data parallelism that may be decomposed in different ways to
suit different target architectures. Our Chapel implementation
of miniBUDE2 closely follows the CUDA implementation
in using a one-dimensional kernel and assigning each GPU
thread a number of poses, as this exposes the most available
parallelism along a single dimension. Like BabelStream, the
Chapel miniBUDE GPU kernel is generated from a single
data-parallel loop. For accelerator devices, miniBUDE requires
data transfer of protein, ligand, and pose information from
host to device and energy results from device to host. This is
accomplished in Chapel by declaring arrays on the host locale
(here) and the device locale (here.gpus[deviceId])
and copying between them using a simple assignment operator.
Chapel automatically generates the host-side code necessary
to perform the transfers.

C. TeaLeaf

TeaLeaf [14] is a mini-app that is part of the Mantevo
suite [15]. TeaLeaf consists of a number of iterative sparse
linear solvers, simulating heat conduction over time using
five-point stencils within a two-dimensional grid. Each solver
in TeaLeaf exposes grid-based data parallelism within its
kernels, similar to BabelStream. Within these parallel stencil
kernels, TeaLeaf requires only a small number of arithmetic
operations for each load or store, thus, it may be expected to
perform better on platforms with higher memory performance,
measured in terms of STREAM balance (see Table I).

One of the primary features employed in the Chapel
implementation of TeaLeaf3 is the use of two-dimensional
index domains. Compared to other programming models e.g.
OpenMP, the application programmer can write solver code
in terms of the ‘natural’ two-dimensional grid using Chapel
domain types, leaving the Chapel compiler to deal with the
complexity of converting array indices into memory locations.
For example, the cg_calc_p kernel of TeaLeaf’s conjugate
gradient solver is computed over a reduced inner domain
within the full grid. This kernel is written for OpenMP target
offload as a nested loop, where parallelism is exposed over
both loops using the collapse directive. The offset index
into the (one-dimensional) array is calculated within the body
of the loop for each two-dimensional grid index (jj, kk) as
follows:
#pragma omp target teams distribute \
parallel for simd collapse(2)

for (int jj=halo_depth; jj < y-halo_depth; ++jj) {
for (int kk=halo_depth; kk < x-halo_depth; ++kk) {

const int index = kk + jj * x;
p[index] = beta * p[index] + r[index];

}
}

2https://github.com/milthorpe/miniBUDE
3https://github.com/milthorpe/TeaLeaf



TABLE I: Processor Configurations and System Balance

Processor Sockets Cores Clock Speed GHz FP64 TFLOP/s Memory Bandwidth GB/s STREAM Balance
Intel Skylake 2 8 3.7 1.89 256 59.2

Intel Cascade Lake 2 24 4.0 6.14 287.3 171.1
Intel Sapphire Rapids 2 52 3.8 12.65 614.4 164.7

AMD Rome 2 64 3.0 6.14 409.6 120
AMD Milan 2 32 3.68 3.77 409.6 73.6

ARM ThunderX2 2 28 2.2 0.99 341.2 23.1
IBM POWER9 2 21 3.5 1.18 340 27.8
NVIDIA P100 2 56 1.19 4.76 549.1 69.4
NVIDIA V100 1 80 1.3 7.83 897 69.9
NVIDIA A100 1 108 1.07 9.75 1935 40.3

AMD MI60 1 64 1.2 7.37 1024 57.6
AMD MI100 1 120 1.0 11.54 1229 75.1

The Kokkos code adopts the reverse approach, decomposing
a flattened one-dimensional index domain of length x∗y, and
then reconstructing the two-dimensional grid index to perform
bounds checks for each element:
Kokkos::parallel_for(

x * y, KOKKOS_LAMBDA(const int &index) {
const int kk = index % x;
const int jj = index / x;

if (kk >= halo_depth
&& kk < x - halo_depth
&& jj >= halo_depth
&& jj < y - halo_depth) {

p(index) = beta * p(index) + r(index);
}

});

In contrast to both, the Chapel code performs parallel
iteration over a two-dimensional domain and also accesses the
array using two-dimensional index tuples ij:
forall ij in Domain.expand(-halo_depth) {
p[ij] = beta * p[ij] + r[ij];

}

The definition of data domains is independent of the choice
of parallel decomposition (distribution), allowing a Chapel
developer to easily modify the code to implement and test
different decompositions for optimal parallelism.

TeaLeaf makes heavy use of sum reductions to compute
global change or error metrics between computations. In
Kokkos and OpenMP, these are implemented using language
support for reductions (#pragma omp reduction and
Kokkos::parallel_reduce). Chapel also provides lan-
guage support for reductions (the reduce intent), however,
this is yet to be implemented for GPU code generation. As an
interim measure, standalone functions are provided for basic
reductions over global memory, such as gpuSumReduce,
which we use for our implementation of TeaLeaf. To use
these functions requires that the partial results of the kernel be
stored in an array in GPU global memory. For example, in the
cg_calc_ur kernel of TeaLeaf, the partial results for each
thread r2i are stored in the array temp, which is then reduced
to compute the sum rrn.

var temp: [reduced_local_domain] real = noinit;
...
forall ij in reduced_local_domain {
u[ij] += alpha * p[ij];
r[ij] -= alpha * w[ij];
temp[ij] = r[ij] ** 2;

}
var rrn = gpuSumReduce(temp);

We expect these standalone functions may be replaced in
future by code generation using the LLVM backends for
each GPU device, which could take advantage of fast shared
memory to compute partial reductions inside a GPU thread
block. With this change, the GPU code would become identical
to the CPU code, as follows:
var rrn: real;
forall ij in reduced_local_domain
with (+ reduce rrn) {
u[ij] += alpha * p[ij];
r[ij] -= alpha * w[ij];
rrn += r[ij] ** 2;

}

Thus, by eliminating the need for a temporary array, the
performance of Chapel reductions may improve in the future.

Unlike the other programming models evaluated in this
study, Chapel provides native language support for multi-
dimensional index domains. In TeaLeaf, this allows array data
to be defined and accessed using the natural two dimensions
(x,y) over which the physical problem is defined, rather than
by iterating over a single dimension and including index
calculations (integer modulo and division) inside each loop.
Using two-dimensional indices improved the readability of
the Chapel code and performed well on CPU platforms.
However, in preliminary testing, we found that using two-
dimensional domains reduced GPU performance due to the
under-utilization of the available GPU cores. In Chapel 1.33,
when generating a GPU kernel for a multi-dimensional do-
main, the first dimension of the domain is assigned to individ-
ual GPU threads, with the remaining dimensions implemented
as loops inside the GPU kernel. This means that the available
GPU thread parallelism is limited by a single dimension of
the domain rather than (as with the other GPU programming
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Fig. 1: BabelStream Triad results for arrays of length 228 FP64 elements

models) the product of all dimensions. To work around this
issue, at the suggestion of the Chapel development team,
we replaced multi-dimensional loops with a one-dimensional
iteration over a linearized index space. For example, the
following two-dimensional loop:

const Domain = {0..<y, 0..<x};
foreach ij in Domain {

u[ij] = energy[ij] * density[ij];
}

would be replaced in our modified Chapel code with:

const Domain = {0..<y, 0..<x};
const OneD = {0..<y*x};
foreach oneDIdx in OneD {

const ij = local_domain.orderToIndex(oneDIdx);
u[ij] = energy[ij] * density[ij];

}

This workaround allows full utilization of the GPU when
working with multi-dimensional arrays. We believe it should
be possible to implement a compiler transformation to apply
this linearization for common GPU loops or, better still,
to faithfully translate two- and three-dimensional loops to
equivalent two- and three-dimensional PTX or GCN kernels.
In Section III, we report results for TeaLeaf both with and
without this workaround.

III. EXPERIMENTAL EVALUATION

A. Experimental Platforms

We ran the Chapel, OpenMP, and Kokkos implementations
of the mini-apps on twelve varied hardware platforms from
multiple processor generations, including Intel, AMD, ARM,
and POWER CPUs, NVIDIA GPUs, and AMD GPUs. We
also ran the CUDA implementation on NVIDIA GPUs and
the HIP implementation on AMD GPUs, as we expected these
‘native’ GPU programming models to provide a gold standard
for performance on their respective platforms. Table I gives

details of all processors (both CPU and GPU) we used in
our evaluation, gathered from vendor-provided architectural
specifications. For each platform, we report the architectural
‘STREAM’ balance [11] defined as GFLOP s−1/Gword s−1

i.e. the number of 64-bit floating point operations that can be
completed per 64-bit word loaded from memory.

We used Chapel 1.33 for all platforms4; when running
on GPUs, we set --gpuUseStreamPerTask=false to
avoid creating a separate stream for each GPU kernel invoca-
tion. We used Kokkos version 4.2.0 on all platforms, with the
same compiler used as OpenMP for each CPU platform, or
hipcc or nvcc as appropriate for the GPUs. The compiler
versions used for OpenMP, CUDA, and HIP on each platform
are shown in Table V at the end of this section. All benchmark
scripts, including compiler versions and configuration settings
for each platform, are available in our GitHub fork of the
Bristol HPC Performance Portability Studies framework at
https://github.com/milthorpe/performance-portability.

B. Results
1) BabelStream: We ran BabelStream version 5.0 on all

platforms using arrays of 228 64-bit floating-point elements.
This means each array is 2GiB in size and, therefore, four
times the size of the largest last-level cache on any of the
test platforms, which is the AMD Rome CPU with an L3
cache size of 512MiB. We compared the maximum mem-
ory bandwidth recorded for the stream triad kernel on each
platform. Figure 1a shows the memory bandwidth in GB/s,
and Figure 1b gives the architectural efficiency in terms of
the percentage of peak memory bandwidth for each platform.
Where a programming model is not available for a system
(e.g. CUDA for AMD GPUs) or would be inappropriate to
compare (e.g. HIP for NVIDIA GPUs), no result is recorded.

4except for miniBUDE on Cascade Lake, Sapphire Rapids, ThunderX2,
and POWER CPUs, for which we used a pre-release version of Chapel 2.0 -
see Section III-B2

https://github.com/milthorpe/performance-portability
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Fig. 2: miniBUDE results for small deck bm1

The NVIDIA A100 GPU achieved the highest absolute
bandwidth for all programming models, which was expected
given this system’s impressive specified memory bandwidth
of 1935GB/s. The highest architectural efficiencies (per-
centage of peak bandwidth achieved) were recorded on the
NVIDIA V100 GPU. The vendor-specific programming mod-
els (CUDA/HIP) achieved the highest efficiencies on their
respective platforms, except for the NVIDIA V100 and A100,
where Kokkos outperformed CUDA.

TABLE II: Performance portability metric for BabelStream

PP by programming model
(architectural efficiency %)

Platform set OpenMP Kokkos CUDA HIP Chapel
All platforms 65.0 65.8 0 0 64.4

Supported CPUs 58.5 58.3 0 0 57.1
Supported GPUs 79.2 82.9 84.5 80.9 80.9

Pennycook, Sewall, and Lee [16] define a performance
portability metric PP as the harmonic mean of the efficiencies
on each platform. Table II shows the metric PP for each pro-
gramming model as calculated from the architectural efficien-
cies shown in Figure 1b. Of the three portable programming
models, Kokkos achieved the highest PP of 65.8; OpenMP
was second with 65.0, and Chapel was third with 64.4. By
definition, PP is zero for any programming model that is not
supported on one or more platforms in the set. Furthermore,
combining performance efficiencies across CPUs and GPUs
can obscure important differences between programming mod-
els. For these reasons, Table II also shows PP calculated for
each model across the set of CPUs and GPUs supported by that
model. CUDA and HIP achieve good performance portability
across the subsets of GPUs they support. It is also apparent
that the lower value of PP for OpenMP is entirely due to
poorer results on GPU platforms, whereas on CPUs, OpenMP

achieves the best performance portability of any of the tested
models. Deakin et al. [7] evaluated different programming
models and compilers for various CPU platforms and found
that OpenMP achieved the highest performance portability;
our results accord with their findings.

2) miniBUDE: We ran miniBUDE version 2.0 on all plat-
forms using the small ‘bm1’ input deck. We compared the
application-reported GFLOP/s measure on each platform.
Figure 2a shows the effective raw performance in GFLOP/s,
and Figure 2b gives the architectural efficiency in terms of the
percentage of peak memory bandwidth for each platform.

The initial performance of Chapel on Cascade Lake, Sap-
phire Rapids, ThunderX2, and POWER CPUs was extremely
poor (architectural efficiencies of 7%, 3%, 12%, and 13%
respectively). This is due to an older version of glibc (2.28)
provided by the operating systems on these platforms.5

Chapel 1.33 implements the sqrt and abs functions for
32-bit floating point operands as calls to the glibc functions
sqrt and fabsf, which in older versions of glibc do not
use the available fast vector instructions available on Intel
architectures. This issue has been resolved in Chapel 2.0 (pre-
release), so for those platforms using the older glibc, we built
miniBUDE using a pre-release version of Chapel.

For miniBUDE, the Sapphire Rapids CPU achieved the
highest absolute performance of 7009GFLOP/s with Kokkos,
reflecting this CPU’s superior floating point arithmetic capa-
bilities. The NVIDIA V100 GPU achieved the highest per-
formance among GPUs at 5772GFLOP/s with CUDA, and
slightly lower with Chapel and Kokkos. This was surprising
given the A100 nominally has a higher peak FLOPs rate at
9.75TFLOP/s compared to 7.83TFLOP/s for the V100. We
note that the V100 DGX has a higher boost clock rate, and we
speculate that this application may not have benefited from the
nominal increase in FLOPs per cycle that the A100 provides.

5https://github.com/chapel-lang/chapel/issues/24112



The AMD CPUs recorded the highest architectural efficien-
cies, in terms of the percentage of peak FLOP/s achieved.
OpenMP, Kokkos, and Chapel all achieved greater than 70%
efficiency on both Rome and Milan CPU platforms. Archi-
tectural efficiencies were poor on the other CPU platforms;
in particular, both OpenMP and Kokkos achieved only 2.8%
of peak FLOP/s on POWER9. CUDA again achieved the
highest architectural efficiencies on NVIDIA GPUs, however,
OpenMP was the best-performing model on AMD GPUs.

TABLE III: Performance portability metric for miniBUDE

PP by programming model
(architectural efficiency %)

Platform set OpenMP Kokkos CUDA HIP Chapel
All platformsa 42.9 44.6 0 0 38.5

Supported CPUsa 43.0 43.1 0 0 32.6
Supported GPUs 42.7 46.7 59.8 39.7 49.1
aExcept POWER9.

Table III shows the metric PP for each programming model
as calculated from the architectural efficiencies shown in
Figure 2b, as well as PP calculated for each model across the
set of CPUs and GPUs supported by that model. Because the
architectural efficiency on POWER9 is so low for OpenMP
and Kokkos, it skews the PP metric wildly. Thus, we chose
to exclude POWER9 in calculating performance portability
for miniBUDE. Of the three portable programming models,
Kokkos again achieved the highest PP of 44.6; OpenMP was
second with 42.9, and Chapel was third with 38.5. Kokkos
and OpenMP performed comparably on CPUs, while Chapel
achieved the highest performance portability across GPUs.

On Intel CPU platforms, we noted that an unintended conse-
quence of a feature of Chapel’s LLVM code generation caused
roughly a 50% drop in performance. Before code generation,
the Chapel compiler normalizes conditional expressions by
converting them into conditional statements.6 Unfortunately,
this can hinder LLVM’s standard constant-folding optimiza-
tions, which, for miniBUDE on Intel, resulted in the generation
of conditional instructions rather than constant register values.
For example, the miniBUDE fasten_main loop contains
the following code:

param NPNPDIST = 5.5;
param NPPDIST = 1.0;
const distdslv =

if phphb_ltz
then (
if lhphb_ltz
then NPNPDIST
else NPPDIST

) else (
if lhphb_ltz
then NPPDIST
else -max(real(32))

);
const r_distdslv = 1.0 / distdslv;

6https://github.com/chapel-lang/chapel/issues/21229

Each of the four conditional branches results in the assign-
ment of distdslv to a compile-time constant; therefore,
the inverse r_distdslv is also a compile-time constant.
However, for the Intel architecture, the generated machine
code computes r_distdslv using a slow floating-point
division due to the failure of the constant folding optimiza-
tion. We evaluated the effect of constant folding by writing
a similar conditional expression for r_distdslv, which
ensured it was computed by choosing between constant values.
This improved the performance on Intel Sapphire Rapids to
6.4TFLOP/s, an architectural efficiency of 50.5% compara-
ble to that achieved by OpenMP and Kokkos on the same
platform. This issue did not affect Chapel code generation for
the AMD, ARM, or POWER CPU platforms. If this issue were
addressed, Chapel’s performance portability for miniBUDE
would be 46.1% across all platforms.

While the Chapel implementation of miniBUDE achieved
higher performance on NVIDIA GPUs than either OpenMP
or Kokkos, it still fell behind the CUDA implementation. In
investigating this issue, we noticed that the Chapel compiler
fails to take advantage of register coalescing optimizations
provided by LLVM, which are available to the GPU backend
code generation. This results in a higher register pressure and,
thus, lower warp occupancy, reducing parallel execution. We
expect that taking full advantage of existing LLVM optimiza-
tions could enable the Chapel implementation to match or even
beat CUDA’s performance on NVIDIA platforms.

Previous evaluations of miniBUDE [7], [10] required sep-
arate OpenMP implementations for CPU and GPU using
OpenMP target offload. Poenaru et al. [10] noted in 2021 that
such specialization of an application for different platforms
runs counter to the notion of performance portability, and
favorably noted that the Kokkos implementation of miniBUDE
was able to support all platforms with a single code base. How-
ever, the OpenMP results reported here are for version 2 of
miniBUDE, which includes a unified OpenMP implementation
that may be considered truly performance-portable.

3) TeaLeaf: We ran TeaLeaf version 2.0 on all platforms
using the tea_bm_5.in input configuration, which performs
a conjugate gradient solve on a 4000×4000 grid for 10 iter-
ations. As TeaLeaf does not report an architectural efficiency
(e.g. GFLOP/s, we use the total runtime (elapsed wall clock
time) as our figure of merit.

Figure 3a shows the effective raw performance in
GFLOP/s, and Figure 3b gives the application efficiency,
which is calculated by dividing the execution time of the
highest-performing implementation by the execution time of
each model. By this definition, the highest-performing model
on each platform has an application efficiency of 100%.

Results for TeaLeaf are more mixed than for the other
applications, reflecting its more complex nature. Chapel per-
forms best on Intel and POWER CPUs; OpenMP performs
best on AMD and ThunderX2 CPUs; and Kokkos performs
best on GPUs (other than NVIDIA GPUs where CUDA
performs best). Each of the portable programming models
returns at least one very poor result: OpenMP on the A100,
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Fig. 3: TeaLeaf results for input tea_bm_5.in

Kokkos on AMD CPUs, and Chapel on NVIDIA GPUs.
However, OpenMP achieved significantly higher performance
portability overall. The ‘Chapel’ column in each figure gives
the results for one-dimensional GPU loops; for comparison,
the ‘Chapel 2D’ column shows the results for the unmodified
code using two-dimensional iteration on GPUs. It is clear that
the reduction in the number of GPU threads due to Chapel
parallelizing over only the first dimension of the domain
results in a disastrous loss of performance for TeaLeaf.

TABLE IV: Performance portability metric for TeaLeaf

PP by programming model
(application efficiency %)

Platform set OpenMP Kokkos CUDA HIP Chapel
All platforms 73.6 37.4 0 0 35.2

Supported CPUs 87.4 27.9 0 0 94.0
Supported GPUs 58.8 81.7 100.0 45.9 17.6

Table IV shows the metric PP for each programming model
as calculated from the architectural efficiencies shown in Fig-
ure 3b for all platforms and for CPUs and GPUs supported by
each model. OpenMP had the highest performance portability
overall; Chapel had the highest performance portability on
CPUs; Kokkos performed best of the portable models on
GPUs; and CUDA achieved PP of 100% on supported GPUs
as it was the best-performing model on all NVIDIA GPUs.

Deakin et al. [6] found in 2019 that OpenMP had poor
application efficiency on GPUs, concluding that this was due
to the immaturity of the target offloading implementation
in major compilers, including Clang-LLVM and expecting
OpenMP portability to improve over time. Our results confirm
their expectations: LLVM’s target offload implementation has
improved markedly up to clang-17.0.6.

IV. CONCLUSION

Each of the mini-apps discussed in this paper exercises dif-
ferent features of the language implementations that we have
considered. When applied over a varied set of applications, we
have found the PP metric of Pennycook, Sewall, and Lee [16]
to be a useful lens for evaluating portable programming
models and identifying areas of relative strength and weakness.
In replicating and updating previous work on performance
portability of the OpenMP and Kokkos models [6]–[10], we
note that the performance of both OpenMP and Kokkos
continues to improve on existing platforms, as portability
extends to new platforms. To this work, we have added Chapel
as a new portable programming model for comparison and
demonstrated that its performance portability is comparable to
existing models. However, we have also identified a number
of implementation issues that reduce Chapel’s performance
portability on certain platforms, in some cases requiring code
to be significantly modified to perform well on GPUs. If
these issues can be fixed, users will be able to develop new
applications without experiencing performance pitfalls.
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TABLE V: Software Configuration

Processor Operating System GPU Driver Version Compiler Chapel version
Intel Skylake Ubuntu 20.04.6 clang 17.0.6 1.33

Intel Cascade Lake Ubuntu 22.04.3 clang-17.0.1 2.0 pre-release
Intel Sapphire Rapids Ubuntu 22.04.3 clang-17.0.1 2.0 pre-release

AMD Rome Ubuntu 22.04.3 clang 17.0.6 1.33
AMD Milan Ubuntu 22.04.3 clang 17.0.6 1.33

ARM ThunderX2 CentOS Stream 8 clang 17.0.2 2.0 pre-release
IBM POWER9 CentOS 8.3 gcc 10.2 2.0 pre-release
NVIDIA P100 Ubuntu 20.04.6 525.147.05 nvcc 11.5 1.33
NVIDIA V100 Ubuntu 22.04.3 535.129.03 nvcc 12.3 1.33
NVIDIA A100 Ubuntu 22.04.3 545.23.08 nvcc 12.3 1.33

AMD MI60 Ubuntu 22.04.3 5.18.13 hipcc 5.4.3 1.33
AMD MI100 Ubuntu 22.04.3 5.18.13 hipcc 5.4.3 1.33
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