
X10 for High-Performance Scientific
Computing

Josh Milthorpe

A thesis submitted for the degree of
Doctor of Philosophy at

The Australian National University

June 2015

c© Josh Milthorpe 2015

Except where otherwise indicated, this thesis is my own original work.

Josh Milthorpe
8 March 2015

To Amy, Bridie and Felix
and the good times ahead.

Acknowledgments

If you were successful, somebody along the line gave you some help.
There was a great teacher somewhere in your life.

– Barack Obama, 13 July 2012, Roanoke, Virginia.

There have been many great teachers in my life. Foremost among these in recent
years have been my supervisor, Alistair Rendell; Steve Blackburn; and David Grove.
These three have favoured me with countless hours of discussion, review and advice,
for which I will always be grateful.

This research would not have been possible without the support of many re-
searchers within IBM. Thanks go specifically to Olivier Tardieu, Vijay Saraswat, David
Cunningham, Igor Peshansky, Ben Herta, Mandana Vaziri and Mikio Takeuchi.

For valuable discussions, ideas and difficult questions, I am indebted to: Bradford
Chamberlain, John Mellor-Crummey, Vivek Sarkar, Jisheng Zhao, Andrey Blizniuk,
Daniel Frampton, Peter Gill, Michelle Mills-Strout, Thomas Huber, Vivek Kumar,
Taweetham Limpanuparb, Peter Strazdins and Uwe Zimmer.

For moral support and broader intellectual contributions, I would like to thank
Evan Hynd, Ben Swift, Torben Sko, Ian Wood, Ting Cao, Brian Lee, Xi Yang, Nimalan
Nandapalan, Joseph Antony, Pete Peerapong Janes, Jie Cai, James Barker, Lawrence
Murray, John Taylor, Shin-Ho Chung, Henry Gardner, Chris Johnson, Lynette Johns-
Boast, Richard Jones, Andrew Holmes and my sister Naomi Milthorpe.

The ANUChem application codes benefited from significant contributions by
V. Ganesh, Andrew Haigh and Taweetham Limpanuparb – thank you all for the
code, and the fun we had writing it. Andrew Gilbert and Taweetham Limpanuparb
provided the comparison timings for Q-Chem used in chapter 4.

I have received generous financial support in the form of an Australian Postgrad-
uate Award from the Australian Government and a supplementary scholarship from
the ANU College of Engineering and Computer Science. Computing facilities to
support this work were provided by IBM and the ANU under Australian Research
Council Linkage Grant LP0989872, and by the NCI National Facility at the ANU.

Finally I would like to thank all my family and friends who have tirelessly sup-
ported me through long years. In particular I thank my parents Robyn and John,
who first set me on the path that led me to a research career and have supported me
again through this second childhood; and most of all Amy, for sticking with me and
reminding me that there’s always more to life.

vii

Abstract

High performance computing is a key technology that enables large-scale physical
simulation in modern science. While great advances have been made in methods and
algorithms for scientific computing, the most commonly used programming models
encourage a fragmented view of computation that maps poorly to the underlying
computer architecture.

Scientific applications typically manifest physical locality, which means that in-
teractions between entities or events that are nearby in space or time are stronger
than more distant interactions. Linear-scaling methods exploit physical locality by ap-
proximating distant interactions, to reduce computational complexity so that cost is
proportional to system size. In these methods, the computation required for each
portion of the system is different depending on that portion’s contribution to the
overall result. To support productive development, application programmers need
programming models that cleanly map aspects of the physical system being simu-
lated to the underlying computer architecture while also supporting the irregular
workloads that arise from the fragmentation of a physical system.

X10 is a new programming language for high-performance computing that uses
the asynchronous partitioned global address space (APGAS) model, which combines
explicit representation of locality with asynchronous task parallelism. This thesis
argues that the X10 language is well suited to expressing the algorithmic properties
of locality and irregular parallelism that are common to many methods for physical
simulation.

The work reported in this thesis was part of a co-design effort involving re-
searchers at IBM and ANU in which two significant computational chemistry codes
were developed in X10, with an aim to improve the expressiveness and performance
of the language. The first is a Hartree–Fock electronic structure code, implemented
using the novel Resolution of the Coulomb Operator approach. The second evalu-
ates electrostatic interactions between point charges, using either the smooth particle
mesh Ewald method or the fast multipole method, with the latter used to simulate
ion interactions in a Fourier Transform Ion Cyclotron Resonance mass spectrometer.
We compare the performance of both X10 applications to state-of-the-art software
packages written in other languages.

This thesis presents improvements to the X10 language and runtime libraries for
managing and visualizing the data locality of parallel tasks, communication using
active messages, and efficient implementation of distributed arrays. We evaluate these

ix

x

improvements in the context of computational chemistry application examples.
This work demonstrates that X10 can achieve performance comparable to estab-

lished programming languages when running on a single core. More importantly,
X10 programs can achieve high parallel efficiency on a multithreaded architecture,
given a divide-and-conquer pattern parallel tasks and appropriate use of worker-local
data. For distributed memory architectures, X10 supports the use of active messages
to construct local, asynchronous communication patterns which outperform global,
synchronous patterns. Although point-to-point active messages may be implemented
efficiently, productive application development also requires collective communica-
tions; more work is required to integrate both forms of communication in the X10
language.

The exploitation of locality is the key insight in both linear-scaling methods and
the APGAS programming model; their combination represents an attractive opportu-
nity for future co-design efforts.

Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Scope and Problem Statement . 1
1.2 Contributions . 3
1.3 Thesis Outline . 3

2 Programming Models and Patterns
for High Performance Scientific Computing 5
2.1 Distributed Memory Models . 7

2.1.1 MPI . 8
2.1.2 Charm++ . 8
2.1.3 Active Messages . 9
2.1.4 Libraries for One-Sided Communications 9

2.2 Shared Memory Models . 10
2.2.1 Pthreads . 10
2.2.2 OpenMP . 11
2.2.3 Cilk++ . 12
2.2.4 TBB . 13
2.2.5 OpenCL / CUDA . 13

2.3 Partitioned Global Address Space Models 15
2.3.1 UPC . 15
2.3.2 Coarray Fortran . 16
2.3.3 Titanium . 16
2.3.4 Global Arrays . 17

2.4 Asynchronous Partitioned Global Address Space Models 17
2.4.1 X10 . 17

2.4.1.1 Active Messages in X10 20
2.4.1.2 X10 Global Matrix Library 20

2.4.2 Habanero Java . 21
2.4.3 Chapel . 21
2.4.4 Fortress . 22

xi

xii Contents

2.5 Quantum Chemistry . 23
2.5.1 The Self-Consistent Field Method 24
2.5.2 Resolution of the Coulomb Operator 26

2.6 Molecular Dynamics . 28
2.6.1 Calculation of Electrostatic Interactions 29
2.6.2 Particle Mesh Ewald Method . 29
2.6.3 Fast Multipole Method . 31
2.6.4 Molecular Dynamics Simulation of Mass Spectrometry 33

2.7 Application Patterns . 35
2.7.1 Dense Linear Algebra . 37
2.7.2 Spectral Methods . 37
2.7.3 N-body Methods . 38

2.8 Summary . 38

3 Improvements to the X10 Language to Support Scientific Applications 39
3.1 Task Parallelism . 39

3.1.1 Worker-Local Data . 40
3.1.1.1 Managing and Combining Worker-Local Data 41
3.1.1.2 New Variable Modifiers for Productive Programming . 44

3.1.2 Visualizing Task Locality In A Work Stealing Runtime 44
3.2 Active Messages . 46

3.2.1 Serialization of Active Messages 47
3.2.1.1 Byte-Order Swapping . 47
3.2.1.2 Object Graphs and Identity 49

3.2.2 Collective Active Messages Using finish/ateach 49
3.2.2.1 A Tree-Based Implementation of finish/ateach 51

3.3 Distributed Arrays . 54
3.3.1 Indexing of Local Data . 54
3.3.2 Ghost Region Updates . 55

3.3.2.1 Implementing Ghost Region Updates for X10 Distributed
Arrays . 56

3.3.2.2 Evaluation of Ghost Updates 59
3.4 Summary . 59

4 Electronic Structure Calculations Using X10 61
4.1 Implementation . 62

4.1.1 Parallelizing the Resolution of the Operator 64
4.1.2 Auxiliary Integral Calculation with a Work Stealing Runtime . . 65

4.1.2.1 Use of Worker-Local Data to Avoid Synchronization . . 65
4.1.2.2 Overhead of Activity Management 66
4.1.2.3 Optimizing Auxiliary Integral Calculations for Locality 67

4.1.3 Distributed and Replicated Data Structures 68
4.1.4 Load Balancing Between Places . 70
4.1.5 Dense Linear Algebra Using the X10 Global Matrix Library . . . 71

Contents xiii

4.2 Evaluation . 73
4.2.1 Single-Threaded Performance . 73
4.2.2 Shared-Memory Scaling . 75
4.2.3 Distributed-Memory Scaling . 79

4.3 Summary . 82

5 Molecular Dynamics Simulation Using X10 83
5.1 Direct Calculation . 83

5.1.1 Implementation . 84
5.1.2 Evaluation . 85

5.2 Particle Mesh Ewald Method . 86
5.2.1 Implementation . 86

5.2.1.1 Domain Decomposition With Distributed Arrays 87
5.2.1.2 Charge Interpolation Over Local Grid Points 87
5.2.1.3 Use of Ghost Region Updates to Exchange Particle Data 87
5.2.1.4 Distributed Fast Fourier Transform 89

5.2.2 Evaluation . 89
5.2.2.1 Single-Threaded Performance 90
5.2.2.2 Distributed-Memory Scaling 91

5.3 Fast Multipole Method . 92
5.3.1 Implementation . 92

5.3.1.1 Distributed Tree Structure Using Global References . . 93
5.3.1.2 Load Balancing . 95
5.3.1.3 Global Collective Operations 97

5.3.2 Evaluation . 97
5.3.2.1 Single-Threaded Performance 98
5.3.2.2 Overhead of Activity Management 101
5.3.2.3 Shared-Memory Scaling 102
5.3.2.4 Distributed-Memory Scaling 103

5.4 Simulating Ion Interactions in Mass Spectrometry 106
5.4.1 Implementation . 107

5.4.1.1 Integration Scheme . 107
5.4.1.2 Ion Motion . 108
5.4.1.3 Induced Current . 108

5.4.2 Evaluation . 108
5.5 Summary . 111

6 Conclusion 113
6.1 Future Work . 115

Appendices 117

A Evaluation Platforms 119

List of Abbreviations 121

xiv Contents

Bibliography 123

List of Figures

2.1 The three arms of science . 5
2.2 OpenMP code for matrix multiplication C = A× B 11
2.3 Cilk code to calculate Fibonacci sequence 12
2.4 C++ code for sum over array of doubles using Intel Threading Building

Blocks (TBB) . 14
2.5 High-level structure of an X10 program 18
2.6 X10 code demonstrating use of closures 19
2.7 X10 code using active messages to implement a single-slot buffer 21
2.8 Chapel code demonstrating domain map and scalar promotion 22
2.9 Charge interpolation in the particle mesh Ewald method 30
2.10 Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: dia-

gram of Penning Trap . 34

3.1 An improved x10.util.WorkerLocalHandle: key features 43
3.2 Locality of activity-worker mapping for Histogram benchmark 46
3.3 Locality of activity-worker mapping for Histogram benchmark with

divide-and-conquer loop transformation 46
3.4 X10 benchmark code for serialization . 48
3.5 X10 version 2.4 compiler transformation of ateach 50
3.6 Implementation of tree-based ateach in x10.lang.Runtime 51
3.7 X10 benchmark code for finish/ateach 52
3.8 Scaling with number of places of the ateach construct on Vayu and

Watson 4P, and comparison with MPI broadcast. 53
3.9 Solution of a system of partial differential equations on a grid 56
3.10 Ghost region update weak scaling . 60

4.1 Pseudocode for construction of Coulomb and exchange matrices using
resolution of the operator . 62

4.2 Variation in time to compute auxiliary integrals for different shells . . . 65
4.3 X10 code to compute auxiliary integrals, Dlm and B using WorkerLocalHandle

. 66
4.4 Parallel loop to compute auxiliary integrals: single activity per thread

with cyclic decomposition . 67

xv

xvi LIST OF FIGURES

4.5 Parallel loop to compute auxiliary integrals: single activity per thread
with block decomposition . 68

4.6 Parallel loop to compute auxiliary integrals: recursive bisection trans-
formation . 69

4.7 High level structure of X10 code to compute Fock matrix 70
4.8 RO contributions to K matrix: block pattern of distributed computation

for different numbers of places . 72
4.9 Multithreaded component scaling and efficiency of RO long range

energy calculation with basic parallel loop 76
4.10 Locality of auxiliary integral calculation with different methods of loop

division . 78
4.11 Multithreaded component scaling and efficiency of RO long range

energy calculation with recursive bisection of loops 79
4.12 Multi-place component scaling of RO long range energy calculation (8

threads per place, 3D-alanine4, cc-pVQZ, N ′ = 11,L = 19) 80

5.1 X10 code for direct calculation of electrostatic interactions between
particles . 84

5.2 X10 code to distribute charge grid array in PME 87
5.3 X10 code to interpolate charges to grid points in PME 88
5.4 Subcell halo region used to calculate direct interaction in particle mesh

Ewald method (PME) . 88
5.5 Comparison between X10 and GROMACS PME mesh evaluation on

Core i7-2600 (one thread): scaling with number of particles 90
5.6 Strong scaling of PME potential calculation on Raijin 91
5.7 Low accuracy comparison between PGAS-FMM and exaFMM on Core

i7-2600 (one thread): scaling with number of particles 98
5.8 Time for M2L transformation for different orders of expansion p 100
5.9 Higher accuracy comparison between PGAS-FMM and exaFMM on

Core i7-2600 (one thread): scaling with number of particles 101
5.10 Multithreaded component scaling and efficiency of PGAS-FMM on

Core i7-2600 . 103
5.11 Locality of activity-worker mapping for FMM force evaluation 104
5.12 Strong scaling of FMM force calculation on Raijin 104
5.13 Strong scaling of FMM force calculation on Watson 2Q 105
5.14 MPI communication map for FMM force calculation on Raijin 106
5.15 FTICR-MS ion cloud evolution in first 2.5 ms of simulation: packet of

5000 lysine and 5000 glutamine ions. 110

List of Tables

2.1 The ‘thirteen dwarfs’: patterns of communication and communication . 36

4.1 Time to compute Fock matrix for different molecules using RO 74
4.2 Multithreaded component scaling of RO long range energy calculation

on Raijin with different methods of dividing integral and J matrix
loops between worker threads (8 threads, 3D-alanine4, cc-pVQZ, N ′ =
11,L = 19) . 77

4.3 Distributed Fock matrix construction using resolution of the Coulomb
operator (RO): load imbalance between places 80

4.4 Distributed K matrix construction using RO: floating-point and com-
munication intensity . 81

5.1 Direct calculation of electrostatic force: cycles per interaction, X10 vs.
C++. 86

5.2 Component timings of PGAS-FMM for varying numbers of particles
and accuracies . 99

5.3 Slowdown due to X10 activity management overhead for PGAS-FMM . 102
5.4 Amino acids in ANU mass spectrometer: timings on Raijin 109
5.5 Amino acids in ANU mass spectrometer: predicted and measured

frequencies . 110

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

This thesis concerns the interplay between programming models and scientific appli-
cations. Specifically, it considers the asynchronous partitioned global address space
programming model and its use in the productive development of high performance
scientific application codes.

1.1 Scope and Problem Statement

Applications of scientific computing, in particular physical simulations, tend to ex-
hibit properties of scale and physical locality. Scale means a system may be simulated
at different levels of accuracy depending on the phenomena of interest. Physical
locality means that interactions between events or entities that are nearby in space
or time are stronger than those between distant events. Linear-scaling methods exploit
physical locality by approximating distant interactions, so as to reduce the computa-
tional complexity of simulation. These methods generate irregular parallelism, where
the amount of computation required for each given portion of the system is different
depending on its importance to the simulation as a whole.

When implementing a scientific algorithm for execution on a high performance
computing architecture, the primary concerns of parallel computing are:

• Parallelism: the computation must be divided into tasks to be executed in par-
allel, producing an even load between processing elements, with minimal task
overhead.

• Data locality: data must be arranged in memory to minimize the amount of
movement between levels in the memory hierarchy and between distributed
processing elements (communication).

• Synchronization: the computation must be ordered for correctness with minimal
locking or other wait overhead.

The properties of scientific applications have a direct bearing on these concerns: phys-
ical scale tends to generate irregular parallelism in simulation, and physical locality

1

2 Introduction

has a direct bearing on data locality and synchronization between computational
tasks.

Traditional programming languages such as C++ and Fortran fail to address
the concerns outlined above. To fill the gap, programmers have used extensions
based on either a shared memory model such as Open Multi-Processing (OpenMP),
or a distributed memory model such as the Message Passing Interface (MPI). As
almost all modern high performance computing systems have multiple levels of par-
allelism, with different levels corresponding to both memory models, the dominant
programming model is now a hybrid of a sequential language, OpenMP and MPI.
As well as effectively requiring programmers to learn three different programming
languages, the hybrid model results in several conceptual mismatches. For exam-
ple, synchronization between MPI processes is achieved through matching message
calls, whereas OpenMP uses explicit synchronization constructs such as barriers and
atomic directives; and data movement between memory spaces in MPI is explicit in
communication, whereas OpenMP does not explicitly recognize data movement be-
tween areas of the memory hierarchy. The ease with which the programming model
supports the expression of parallelism has been identified as a dominating factor in
programming productivity for high performance computing (HPC) [Kuck, 2004].

In comparison with established HPC programming models, the asynchronous
partitioned global address space model [Saraswat et al., 2010] has two distinguishing
features: distributed task parallelism and a global view of memory which accounts
for data locality. The aim of this research has been to investigate whether this model,
as realized in the X10 programming language1, allows the succinct expression of typical
scientific application codes while achieving performance comparable to or better than
established programming languages and libraries. The programming model, however,
is only one factor in the clarity and performance of a given application code. Of
arguably equal importance are data structures and high level operations provided by
the runtime or third-party libraries. These are the building blocks from which the
most important parts of any application are constructed, and allow the programmer
to operate at a higher level of abstraction than individual numerical or memory
update operations. Finding the right data structures and operations to express a
given algorithm can greatly reduce both the development and execution time of the
application.

This thesis seeks to address the following questions:

• How can the explicit representation of data locality and task parallelism in the
APGAS programming model be used to succinctly express data structures and
high-level operations that support scientific applications?

• How does the performance of these operations compare with traditional mod-
els? What are the barriers to performance, and how can these be overcome?

These questions are considered with regard to the three concerns of parallel comput-
ing identified above.

1http://x10-lang.org

http://x10-lang.org

§1.2 Contributions 3

Unavoidably, there are many important aspects of high performance scientific com-
puting that are not addressed in this thesis. For example, development productivity
is a major factor in ‘time to solution’ and was the key driver for the Defence Ad-
vanced Research Projects Agency (DARPA)’s High Productivity Computing Systems
project which funded the initial development of the X10 language [Dongarra et al.,
2008]. Objective measurement of development productivity is a complex systems
analysis problem, therefore productivity is not considered in this thesis except insofar
as ‘clarity’ or ‘expressiveness’ may be taken as subjective factors in total development
effort. Another key concern for high performance computing is fault tolerance, as
increasing system complexity reduces mean time between failures. Finally, numerical
accuracy is a perennial concern; the correctness of results, as well as the balance
between accuracy and computation time, are critical to the effective application of
scientific computing. Fault tolerance and numerical accuracy are both areas in which
the programming model may be expected to play a role, but they are orthogonal to
the concerns addressed in this thesis.

1.2 Contributions

This thesis presents results from an ongoing co-design effort involving researchers at
IBM and ANU, in which a new programming model – the asynchronous partitioned
global address space model – is applied to high performance scientific computing.
Insights gained from application development inform language design and vice versa.

The contributions presented in this thesis fall into two main categories: firstly,
enhancements to the X10 programming language or the APGAS programming model
to improve expressiveness or performance, and secondly, the development of sci-
entific application codes, high level data structures and operations to motivate and
evaluate such improvements. Many of the concepts and techniques used in the X10
programming language are found in other languages, and as such this work has a
wider application than the X10 language itself.

1.3 Thesis Outline

The presentation of this thesis is focused on two example applications from the field
of computational chemistry: molecular dynamics and the Hartree–Fock method; this
reflects an early decision that this research should be strongly application-driven.
These applications were the first significant X10 codes created outside of the X10
development team, and as such represented an important source of external feedback
for the language designers.

Chapter 2 presents an overview of programming models used in high perfor-
mance scientific computing, and presents the background for the scientific applica-
tion examples discussed in later chapters. Chapter 3 expands on key features of
the X10 programming language and the APGAS programming model, and proposes
improvements to the X10 language and runtime libraries to better support scientific

4 Introduction

programming. Chapters 4 and 5 describe the application of the APGAS programming
model to two different scientific problems: the implementation of a Hartree–Fock self-
consistent field method, and calculation of electrostatic interactions in a molecular
dynamics simulation. Finally, Chapter 6 summarizes how the contributions presented
in this thesis support productive programming of high performance scientific appli-
cations, and identifies opportunities for future research.

In evaluating the contributions, we conducted performance measurements on five
parallel machines, ranging from a typical desktop machine to a highly-multithreaded,
tightly integrated compute cluster; these machines are described in detail in ap-
pendix A.

All application codes described in this thesis are available at http://cs.anu.edu.au/
~Josh.Milthorpe/anuchem.html and are free software under the Eclipse Public License.

http://cs.anu.edu.au/~Josh.Milthorpe/anuchem.html
http://cs.anu.edu.au/~Josh.Milthorpe/anuchem.html

Chapter 2

Programming Models and Patterns
for High Performance Scientific
Computing

The goal of science is to increase our understanding of the physical world, to explain
and predict natural phenomena. Traditionally, the two arms of science have been
modelling and experiment. Scientists construct a simplified theoretical model of phys-
ical phenomena; this is tested and refined based on observations of the real world
gained through experiment.

nature

model

experiment simulation

Figure 2.1: The three arms of science

Computing has enabled the development of
a third arm of modern science: simulation. By
translating abstract models into numerical sim-
ulations, scientists can compare systems with
different parameters and starting conditions, ob-
serve simulated phenomena at scales that may
be impossible to observe in a real-world exper-
iment, and quickly test whether a change in the
model improves its correspondence to experi-
mental data. Figure 2.1 shows the relationship
between these three arms of modern science:
simulation is used to understand and refine a
model, which can then be tested against exper-
imental observations of the natural world.

In the same way that scientists use simpli-
fied models to understand physical phenomena,
computer programmers construct simplified models of computer architectures. Mod-
ern computer architectures are unavoidably complex. Typical descriptions of modern
architectures run into hundreds or thousands of pages (for example, Intel [2013a];
IBM [2012]), describing instruction sets, functional units and pipelines, memory man-
agement, cache hierarchies and I/O. A programming model provides a framework

5

6 Programming Models and Patterns for High Performance Scientific Computing

which captures those features of the architecture that are essential to the program-
mer while abstracting away less important details. A good programming model
enhances programmer productivity and may be applied to a whole class of similar
architectures.

Typical scientific models exhibit three properties which have particular bearing
on computer simulation:

1. Measure: Descriptions of physical phenomena are quantitative, meaning that
simulation requires numerical computing.

2. Locality: Interactions between events or entities that are nearby in space or time
are stronger than those between distant events.

3. Scale: A system exhibits qualitatively different behavior depending on the
spatial or temporal scale at which it is observed, and may therefore be simulated
at different levels of accuracy depending on the phenomena of interest. (Notable
exceptions to this rule exist in non-linear and chaotic systems.)

The latter two properties are of particular interest when considering the implementa-
tion of the physical model as a computer code:

• Locality: Physical locality in the scientific model may be mapped to data locality
in the simulation. Computer systems also exhibit locality, in the form of a
distance-dependent cost for data transfers between portions of the memory
system (e.g. between levels in the cache hierarchy or between local and remote
memory spaces). As memory access costs become increasingly non-uniform, a
programming model which makes these costs explicit would support greater
performance portability and transparency.

• Scale: The requirement to simulate areas of greater interest at higher levels
of accuracy translates into irregular computation. This presents a challenge
for load balancing, which is becoming more important with the trend towards
larger numbers of hardware threads. An asynchronous, task-based programming
model is an attractive approach for load balancing irregular computations on
highly multithreaded architectures.

This thesis will argue that the asynchronous partitioned global address space (APGAS)
programming model is well suited to implementation of scientific applications on
modern architectures, as it combines the explicit representation of data locality with
task-based parallelism.

The two parallel programming models most commonly used in high performance
computing are the distributed memory and shared memory models. In the distributed
memory model, the memory space for each process is private; whereas in the shared
memory model, the entire memory space is shared between all processes. The emerg-
ing partitioned global address space (PGAS) model combines features of shared and
distributed memory, allowing all processes to access memory anywhere in the system
while still accounting for locality. X10 and related APGAS programming languages

§2.1 Distributed Memory Models 7

extend the PGAS model with support for asynchronous tasks. Sections 2.1–2.4 dis-
cuss the key features of each model and some commonly used HPC programming
technologies which exemplify them.

A physical simulation may describe the target system at different levels of approx-
imation. At the highest level of description, systems of particles might be modeled
according to relativistic quantum mechanics. Successive approximations may be
made to create a hierarchy of models; lower level (coarser grained) models lose the
ability to model certain kinds of behavior, but gain applicability to larger systems or
longer timescales [Berendsen, 2007, §1.2]. This thesis presents applications from the
domain of computational chemistry at two different levels of the hierarchy. Quantum
chemistry, introduced in section 2.5, models the interactions between atomic nuclei
and electrons in bound states. Molecular dynamics, introduced in section 2.6, oper-
ates at a higher level of abstraction and approximates the interactions between atoms
and molecules using classical mechanics. While both of these levels are relatively
high on the hierarchy of simulation (compared to, for example, fluid dynamics),
they represent significant classes of scientific application programs, including the
bulk of materials science applications. They are therefore of interest in evaluating
programming models for current and emerging architectures.

Finally, section 2.7 places the application examples used in this thesis within broad
classes of scientific and engineering applications. Such a classification is useful in
programming language–application co-design as it helps to determine the scope and
generality of design choices.

2.1 Distributed Memory Models

In the distributed memory model, computation is divided between a number of pro-
cesses, each with its own private address space. Processes communicate via explicit
messages, which may be passive (data transfer only) or active (also initiating compu-
tation at the receiving end). Two-sided communications require the cooperation of
sender and receiver, whereas one-sided communications allow one process to directly
access data owned by another process without its explicit cooperation.

The most widely used distributed memory model is the process model, first de-
fined for Unix [Ritchie and Thompson, 1974] and now ubiquitous in parallel operating
systems. Each process may execute a different program; processes communicate by
means of pipes or sockets. The Unix process model, while efficient and flexible, is at
too low a level for productive programming of portable, high performance applica-
tions. The programmer must manage message formats, buffering and synchroniza-
tion. Furthermore, pipes and sockets are difficult to combine with hardware support
for efficient network operations; for example, row broadcast on a torus network. To
insulate the programmer from such low-level details, and to enable portability to a
wide range of parallel architectures, higher-level programming models are needed.
The following subsections describe approaches to distributed memory programming
based on two-sided messaging (MPI), remote procedure calls (Charm++), low-level
active messages, and libraries for one-sided communications.

8 Programming Models and Patterns for High Performance Scientific Computing

2.1.1 MPI

The Message Passing Interface (MPI) was developed to address the issues of pro-
grammability mentioned above with the first standard, MPI-1, released in 1994 [MPI
Forum, 1994]. MPI defines a set of high-level message functions along with data types,
collective operations and operations for creating and managing groups of processes.
Originally, all message functions were two-sided operations in which each call from
a sending process must be matched with a corresponding call from the receiving
process. MPI-2 added one-sided communications such as put and get, which have
the potential to map to hardware support for remote direct memory access (RDMA)
available on modern architectures [MPI Forum, 2003].

The availability of implementations of MPI for all high performance architectures
makes it an attractive candidate as a communications layer on top of which to imple-
ment high-level languages. However, the MPI-2 model of one-sided communications
received some criticism that it was a poor match for new partitioned global address
space parallel languages [Bonachea and Duell, 2004]. Partly in response to these
criticisms, MPI-3 implemented a new memory model for one-sided communications,
as well as adding non-blocking and sparse collective operations [MPI Forum, 2012].

MPI has been exceedingly successful in high performance computing, such that
it may be considered as the de facto standard for distributed memory programming.
There are high performance implementations of MPI available for every major HPC
architecture, and MPI has been used to implement a vast range of scientific applica-
tions. Despite these successes, MPI has a number of drawbacks from the point of
view of programmer productivity. Firstly, the message passing model encourages
a fragmented view of computation, in which data structures and control flow are
explicitly decomposed into per-process chunks [Chamberlain et al., 2007]. The details
of decomposition tend to obscure the high-level features of the computation. Sec-
ondly, MPI processes do not share data except by explicit communication; in contrast,
modern computing architectures are typically composed of multiple cores with a
shared cache hierarchy. To take full advantage of such systems, the programming
model must reflect the sharing of data between tasks. Section 2.2 describes such
shared memory models.

2.1.2 Charm++

Charm++ is an extension to C++ for message-driven parallel programming [Kalé
and Krishnan, 1993]. It is based on migratable objects called chares, which interact
through asynchronous method invocations. New chares can be created by a seed — a
constructor invocation which may be called on any processing element to instantiate
the chare. The ability to migrate chares allows the runtime system to provide fault
tolerance and adapt to changing processor resources. The Charm++ runtime system
has been used to implement Adaptive MPI, which provides dynamic load balancing
and multithreading in a traditional MPI framework [Huang et al., 2003].

Charm++ uses shared memory to optimize communication between processing
elements located on the same node. However, it does not otherwise take advantage

§2.1 Distributed Memory Models 9

of shared memory by, for example, allowing multiple chares to operate on shared
data structures.

2.1.3 Active Messages

Active messages are an alternative to two-sided messages, which allow overlapping
of computation and communication with minimal overhead [von Eicken et al., 1992].
They differ from general remote procedure call mechanisms in that an active message
handler is not required to perform computation on data, but merely to extract data
from the network and integrate them into ongoing computation. An active message
contains the address of a user-level handler to be executed on receipt of the message.

Active messages are a primitive communication mechanism, which may be used
to implement higher-level communication models including message passing. For
example, the Parallel Active Message Interface (PAMI) is used on the Blue Gene/Q
supercomputer to implement MPI [Kumar et al., 2012].

2.1.4 Libraries for One-Sided Communications

While efforts to define a standard for two-sided communications achieved success
through MPI, approaches to one-sided communications have been more varied. Dur-
ing the 1990s, vendors developed platform-specific interfaces for one-sided commu-
nications (or remote memory access) such as Cray’s SHMEM [Barriuso and Knies,
1994] and IBM’s LAPI [Shah et al., 1998]. Following these efforts, the Aggregate
Remote Memory Copy Interface (ARMCI) was created as a portable library for effi-
cient one-sided communications [Nieplocha et al., 2006b]. ARMCI has been used to
support the global address space communication model implemented in the Global
Arrays library (see §2.3.4), complementing message-passing libraries like MPI, and
has also been used to implement Coarray Fortran (CAF) (see §2.3.2). Remote memory
operations in ARMCI do not require any action by the receiving process in order
to progress. ARMCI supports non-contiguous data transfers, which are important
in scientific applications involving multidimensional arrays. It also provides remote
atomic accumulate and read-modify-write operations and distributed mutexes.

While ARMCI provides powerful communication primitives, it is targeted at the
development of runtime systems and libraries rather than at application program-
ming [Nieplocha et al., 2006b]. The lack of explicit rules for synchronization requires
some care to avoid errors in using ARMCI remote put operations, and may lead to
complications when combined with sequential programming models.

GASNet is a portable library of one-sided communication primitives designed for
implementing PGAS languages [Bonachea, 2002]. Its core application programming
interface (API) is based on active messages; it also provides an extended API featuring
put and get operations that may take advantage of hardware support for RDMA.
GASNet has been used to implement single program, multiple data (SPMD) PGAS
languages like CAF, Unified Parallel C (UPC) and Titanium (see §2.3) as well as
Chapel (see §2.4.3).

10 Programming Models and Patterns for High Performance Scientific Computing

By themselves, active messages and libraries for one-sided communication do not
constitute a parallel programming model; a complete model must also define how the
computation is to be divided locally into parallel tasks, and how tasks and messages
should synchronize.

2.2 Shared Memory Models

In the shared memory model, a single address space is shared between a number
of threads, each of which has a private stack and control flow. ‘Communication’
is implicit, via threads operating on shared data structures and observing the re-
sults of updates from other threads. To ensure consistency of operations, explicit
synchronization between threads is required by means of memory barriers, locks or
higher-level synchronization constructs. Shared memory models may be further di-
vided into threading models, in which the programmer divides the computation into
units of work according to available hardware parallelism; and task-based models,
in which the programmer exposes potentially parallel tasks to be scheduled by a
runtime system for execution on one or more processing elements. The following
sections describe a pure threading model (Pthreads), an API which supports both
threading and task-based programming (OpenMP), two purely task-based models
(Cilk and Intel Threading Building Blocks (TBB)), and finally the OpenCL and CUDA
models for accelerators, which address issues of partitioned memory spaces arising
from programming for accelerators such as GPUs.

2.2.1 Pthreads

The most widely used example of the shared memory model is the Posix Threads
standard (Pthreads) [IEEE, 2008], which defines an API for creating and managing
threads and is implemented for all UNIX-like systems. Threads synchronize through
barriers, mutexes and condition variables.

The Pthreads model maps closely to underlying features of typical operating
systems and hardware; it is therefore an efficient programming model for high per-
formance computing. The use of Pthreads requires, however, significant ‘boilerplate’
code to create and synchronize threads, which is a barrier to achieving high produc-
tivity for application programming. Moreover, the explicit threading model implies
an undesirable tradeoff in terms of load balancing: executing with a minimal number
of threads may increase load imbalance (the time spent waiting for idle threads),
whereas over-subscribing threads creates additional overheads in the operating sys-
tem and scheduler. Lighter-weight threading models such as Nano-threads [Martorell
et al., 1996], Qthreads [Wheeler et al., 2008] and MassiveThreads [Nakashima and
Taura, 2014] reduce the overhead of creating threads, however, a more promising
approach is to decouple the units of execution from the executing threads altogether.
This is the approach used in shared memory task-based model implemented in high-
level APIs such as OpenMP, Cilk and TBB.

§2.2 Shared Memory Models 11

1 double *a = new double[M*K]();
2 double *b = new double[K*N]();
3 double *c = new double[M*N]();
4 #pragma omp parallel for schedule(static) collapse(2)
5 for (size_t j = 0; j < N; j++) {
6 for (size_t i = 0; i < M; i++) {
7 double x = 0.0;
8 for (size_t l = 0; l < K; l++) {
9 x += a[i+l*K] * b[l+j*N];

10 }
11 c[i+j*N] = x;
12 }
13 }

Figure 2.2: OpenMP code for matrix multiplication C = A× B

2.2.2 OpenMP

OpenMP [Dagum and Menon, 1998] is a portable, high-level API for shared memory
parallel programming in C, C++, and Fortran. It supplements these languages with
compiler directives, runtime library functions and environment variables. OpenMP
uses a fork-join model like that of Pthreads, with code executing sequentially until it
enters a parallel region. Work-sharing directives support both data parallelism (over
loops) and functional decomposition (using parallel sections).

Figure 2.2 shows an OpenMP code to perform the matrix multiplication C =
A× B. The compiler directive on line 4 defines a parallel region over the following
block (lines 5-12); it also declares that the following for loop(s) should be executed
in parallel. The schedule(static) clause declares that loop iterations should be
divided evenly between threads using a static block division; collapse(2) means
that the iteration space of the following two loops (over M and N) should be divided
in two dimensions between all threads.

OpenMP programs are structured in terms of teams of cooperating threads. The
primary model of parallelism in OpenMP is explicit threading: parallel sections create
a defined number of threads, between which work can be shared. Explicit threading
makes it difficult to compose parallelism at multiple levels using nesting due to a
combinatorial explosion in the number of threads [McCool et al., 2012, chapter 1]. For
this reason, the default usage is to disable nested thread creation.

OpenMP 3.0 [OpenMP ARB, 2008] introduced parallelism using tasks, which
may be executed by a work stealing scheduler [Ayguade et al., 2009]. Tasks allow the
convenient representation of divide-and-conquer and irregular applications. However,
OpenMP tasks may not include nested work-sharing constructs, which is a limitation
when calling parallel library code [Teruel et al., 2013]. This is in contrast to the
task-based shared memory programming models of Cilk and TBB, which support
arbitrary nesting. The task-based approach also generalizes readily to multiple levels
of parallelism on distributed memory systems.

12 Programming Models and Patterns for High Performance Scientific Computing

1 cilk int fib(int n) {
2 if (n < 2) return n;
3 else {
4 int n1, n2;
5 n1 = spawn fib(n1);
6 n2 = fib(n2);
7 sync;
8 return (n1 + n2);
9 }

10 }

Figure 2.3: Cilk code to calculate Fibonacci sequence

OpenMP 4.0 [OpenMP ARB, 2013] added support for accelerators such as graphics
processing units (GPUs) using target constructs to manage data and tasks on the
target device, and places to define thread affinity policies to improve data locality.
In these respects OpenMP is moving towards explicit representation of data locality
similar to PGAS models (see §2.3).

OpenMP has enjoyed significant success due to widespread compiler support
as well as the ease with which programmers can incrementally add parallelism to
existing codes using compiler directives. The most common use of OpenMP for HPC
is to express shared-memory parallelism within a larger distributed memory code,
e.g. intra-node parallelism for each node of a cluster. This approach requires the
programmer to decompose the program at two levels, leading to a fragmented view
of the algorithm.

2.2.3 Cilk++

Cilk++ [Blumofe and Leiserson, 1999; Leiserson, 2010] is an extension to C/C++ for
task parallelism using a fork-join model. The programmer converts a normal serial
program to a parallel program by annotating with special Cilk keywords to fork and
join tasks. A function is marked for possible execution in parallel using the keyword
cilk; it may then be called as a separate task using the keyword spawn. The keyword
sync is used to wait for termination of all tasks started by the current block. Figure 2.3
demonstrates the use of these keywords in a Cilk program to compute the Fibonacci
sequence in parallel.

The Cilk runtime was the first to schedule tasks through work stealing. The runtime
maintains a pool of worker threads which execute activities, each with its own double
ended queue or deque1 of tasks. When a worker encounters a spawn statement, it
pushes a task to the top of its own deque. If another worker thread is idle, it picks
another worker at random and attempts to steal a task from the bottom of its deque.
Thus the victim and the thief operate on opposite ends of the deque, reducing the
need for synchronization.

1pronounced ’deck’

§2.2 Shared Memory Models 13

Recognizing the importance of data parallelism and loop structures to typical
applications, Cilk provides a keyword cilk_for, which allows the iterations of a
loop to run in parallel [Leiserson, 2010]. The loop is automatically parallelized
using divide-and-conquer recursion. Divide-and-conquer parallelism has positive
implications for data locality in some loops, which will be discussed in chapter 3.

Cilk-style work stealing has been adopted in numerous programming languages
and libraries, including the Java Fork-Join framework [Lea, 2000], X10 (see §2.4.1),
Chapel (§2.4.3) and TBB.

2.2.4 TBB

Intel Threading Building Blocks (TBB) [Reinders, 2010] is a C++ template library that
supports task parallelism. It focuses on divide-and-conquer parallel algorithms and
thread-safe data structures, and it implements load balancing using Cilk-style work
stealing.

The TBB scheduler, like other work-stealing schedulers, requires the problem to
be divided into a set of nested tasks. To this end, it provides for parallel loops to
be created by recursively subdividing a loop range. TBB introduces the concept of a
splittable type, which defines a splitting constructor that allows an instance of the type
to be split into two pieces.

By using standard C++ template programming practices, TBB provides an ac-
cessible path for C++ programmers to incrementally add parallelism to existing
applications. For example, the code in figure 2.4(a) calculates a simple sum reduction
over an array of double-precision floating-point numbers. Figure 2.4(b) shows how
TBB’s parallel_loop construct can be used to divide this loop into a set of tasks to
be executed in parallel. While the loop-splitting approach is powerful, defining loop
body objects for each parallel loop using the C++98 standard requires rather verbose
code. The use of lambda functions introduced in the C++11 standard reduces this
burden [Robison et al., 2008]. Figure 2.4(c) shows code for the same parallel sum
using TBB with lambda expressions.

TBB directly supports a number of commonly used parallel programming patterns
including map, reduce, pipeline and task graph. It also provides multiple flavors of
mutex and atomic operations to synchronize between tasks, and scalable memory
allocation routines designed for use by multiple threads.

The direct support for fundamental parallel patterns means that many parallel
applications may be expressed concisely using TBB. It assumes a shared-memory
model, meaning that a complementary distributed memory model such as MPI is
required to address issues of data locality.

2.2.5 OpenCL / CUDA

The Open Computing Language (OpenCL) framework [Khronos, 2012] supports the
execution of compute kernels on accelerators such as GPUs, digital signal processors
or attached co-processors like the Intel Xeon Phi. The kernels are specified in an
extension of C99 which allows a computation to be divided into a regular grid of

14 Programming Models and Patterns for High Performance Scientific Computing

1 double SerialSum(double a[], size_t n) {
2 double sum = 0.0;
3 for (size_t i = 0; i < N; i++) {
4 serial_sum += a[i];
5 }
6 return sum;
7 }

(a) Serial sum

1 struct Sum {
2 double value;
3 Sum() : value(0.0) { }
4 Sum(Sum& s, tbb::split) { value = 0.0; }
5 void operator()(const tbb::blocked_range<double*>& r) {
6 double res = value;
7 for (double* v = r.begin(); v != r.end(); v++) {
8 res += *v;
9 }

10 value = res;
11 }
12 void join(Sum& rhs) { value += rhs.value; }
13 };
14
15 Sum sum_body;
16 tbb::parallel_reduce(tbb::blocked_range<double*>(a, a+N), sum_body);
17 double sum = sum_body.value;

(b) Parallel sum using TBB

1 double sum2 = tbb::parallel_reduce(
2 tbb::blocked_range<double*>(a, a+n),
3 0.0,
4 [](const tbb::blocked_range<double*>& r, double value)->double
5 {
6 return std::accumulate(r.begin(), r.end(), value);
7 },
8 std::plus<double>()
9);

(c) Parallel sum using TBB and lambda expressions

Figure 2.4: C++ code for sum over array of doubles using TBB

§2.3 Partitioned Global Address Space Models 15

work items, which are processed in work groups (mirroring the architecture of a
typical GPU). There are mechanisms for allocating and sharing memory between
threads in a work group, and synchronizing within a group. Kernels are executed
asynchronously on the accelerator through a queuing system, and may also be ex-
ecuted on a standard CPU. The OpenCL memory model distinguishes between the
main memory of the host device and memory of the accelerator device, and an API
is provided to manage transfers between the two. Device memory is further divided
into private memory, local memory accessible by all threads in a work group, constant
memory that is readable by all threads, and global memory. The Compute Unified
Device Architecture (CUDA) framework [NVIDIA, 2013] is similar to OpenCL, but is
specific to NVIDIA GPUs.

The OpenCL and CUDA programming models reflect the divisions in memory of
typical GPU architectures, and the cost of transferring between portions of the mem-
ory. However, they also allow for threads to share memory using a relaxed memory
consistency model. As such they combine elements of both distributed and shared
memory models. The close mapping between these models and target architectures
(GPUs) supports the development of high performance codes, however, it may not be
possible to achieve performance portability to other non-GPU architectures.

2.3 Partitioned Global Address Space Models

The partitioned global address space (PGAS) model is similar to the shared memory
programming model in that all threads of execution have access to a global shared
memory space. However, in the PGAS model, the memory space is divided into local
partitions, with an implied cost to moving data between partitions. The programmer
has control over the placement of data and consequently computation over those data,
which is critical for high performance on modern computers [Yelick et al., 2007a].

2.3.1 UPC

A reliable approach to implementing the PGAS model is to extend an existing pro-
gramming language. UPC [UPC Consortium, 2005] extends ANSI C with shared
(global) objects. Shared objects may be divided into portions local to each thread in
the computation, but each thread may access remote data using shared pointers. UPC
also defines a user-controlled memory consistency model, in which each memory ac-
cess is either strict in the sense of sequential consistency [Lamport, 1979] or relaxed
in which case ordering of memory accesses is only preserved from the point of view
of the local thread. UPC also introduced a split-phase barrier, in which threads signal
arrival at the barrier and may then continue to do useful (purely local) work until all
other threads have arrived at the barrier. This may be used to reduce idle time due
to barrier synchronization, in applications where the work may be divided into dis-
tributed and local portions. UPC also provides a number of collective ‘relocalization’
functions (broadcast, scatter, exchange) and computation functions (reduce, prefix
reduce) similar to those defined by MPI.

16 Programming Models and Patterns for High Performance Scientific Computing

UPC’s simple locality model provides performance portability across a range of
shared and distributed memory systems. SPMD-style applications written in UPC
have achieved high performance on the largest computing clusters. It is less well
suited to irregular applications requiring load balancing, as data decompositions are
static and new threads cannot be created. Min et al. [2011] propose a dynamic tasking
library and API as an extension to UPC to support such applications.

2.3.2 Coarray Fortran

CAF is an extension of Fortran for SPMD programming with the partitioned global
address space model [Numrich and Reid, 1998; Mellor-Crummey et al., 2009]. Multi-
ple process images execute the same program, each with its own local data. The key
concept in CAF is the coarray, which is an array shared between multiple images in
which each image has a local portion of the array, but may directly access data local
to other images. The original coarray extensions (which have since been adopted
into the Fortran 2008 standard) required coarrays to be statically allocated across all
processes. Later work [Mellor-Crummey et al., 2009] expands CAF to support dynam-
ically allocated arrays over subsets of images, and global pointers for the creation of
general distributed data structures.

By extending Fortran, CAF builds on decades of effort in the development of
high-performance compilers and application codes, and provides an evolutionary
pathway for existing codes to exploit parallelism using the PGAS model.

2.3.3 Titanium

Titanium is a parallel dialect of Java designed for high performance scientific comput-
ing [Yelick et al., 1998]. Titanium extends serial Java with multi-dimensional arrays,
separating the index space (domain) from the underlying data, and an unordered
loop construct, foreach, which allows arbitrary reordering of loop iterations to sup-
port optimizations such as cache blocking and tiling [Yelick et al., 2007b]. To avoid
the overheads associated with boxed types in Java, Titanium supports the definition
of immutable classes, which save memory and preserve locality by dispensing with
pointers.

Titanium follows the SPMD model of parallelism; processes synchronize at barrier
statements and a single-qualification analysis is used to ensure that all processes en-
counter the same sequence of barriers. Distributed data structures such as distributed
arrays may be constructed using global pointers, which may refer to objects in the local
partition or a remote partition. Difficulties in implementing full distributed garbage
collection motivated the introduction of memory regions, into which objects may be
allocated and an entire region de-allocated with a single method call [Yelick et al.,
2007b]. (A better solution to this problem was subsequently implemented for the X10
language; see 2.4.1.)

§2.4 Asynchronous Partitioned Global Address Space Models 17

2.3.4 Global Arrays

The Global Arrays library [Nieplocha et al., 2006a] provides PGAS support for array
data, and has been used successfully as a component in computational chemistry
codes such as NWChem [Valiev et al., 2010] as well as a range of other codes. Global
Arrays supports one-sided put and get operations, synchronization and collective
operations but does not support active messages.

2.4 Asynchronous Partitioned Global Address Space Models

The asynchronous partitioned global address space (APGAS) model extends the
PGAS model with support for asynchronous tasks. APGAS is exemplified by three
languages developed under the DARPA High Productivity Computing Systems
(HPCS) program [Dongarra et al., 2008], which aimed to reduce ‘time to solution’
for high performance applications. It has been widely acknowledged that the non-
uniform programming models prevalent in HPC are a limitation on programmer
productivity [Hochstein et al., 2005; Dongarra et al., 2011]. Accordingly, one com-
ponent of the program was the development of new parallel programming models
and languages. Initially, three companies were funded to develop new programming
languages:

• IBM - the X10 language;

• Cray - the Chapel language; and

• Sun - the Fortress language.

DARPA funding for Fortress was discontinued in 2007 and active development on
the project ended in 2012. Although DARPA funding for X10 and Chapel ended in
2012 with the completion of the HPCS program, both IBM and Cray continue active
development of their languages.

All three HPCS languages use the APGAS programming model. The APGAS
model provides a global view of memory in which a portion of the memory is local
to each process. It is therefore straightforward to write programs in which processes
access remote data, while still accounting for locality and associated communication
costs. X10 is entirely explicit about locality whereas Chapel and Fortress support oper-
ations with implicit remote access. They are all strongly-typed languages supporting
object-oriented programming with parameterized types.

2.4.1 X10

X10 [Charles et al., 2005] is an APGAS language which explicitly represents locality
in the form of places. The sequential core of X10 borrows much from Java, and is
fully interoperable with it [Saraswat et al., 2014]. To this core, X10 adds a small
number of powerful parallel constructs and rules for their combination. A place
in X10 corresponds to one or more co-located processing elements with attached

18 Programming Models and Patterns for High Performance Scientific Computing

Distributed array

Place 0 Place (N-1)

outbound

activities

activity

 replies

Activities

Local Data

Activities

Local Data

Figure 2.5: High-level structure of an X10 program

local storage. The async statement provides task parallelism, allowing the creation
of activities at any place, which may be synchronized using atomic blocks. The
at statement combines communication and computation in active messages, and the
finish construct supports distributed termination detection. Figure 2.5 shows the
high-level structure of an X10 program.

Mutual exclusion is ensured between activities running at the same place by the
use of conditional and unconditional atomic blocks (when and atomic). An atomic
block executes as though all other activities in that place are suspended for the
duration of the block. A conditional atomic block when(c)S suspends until such time
as the condition c is true and then executes the statement S atomically. Correctness
requires that any update by another activity affecting the condition c must also be
made within an atomic block; otherwise it would be invisible to the activity waiting
on the condition. Activities can be clocked – synchronized in phased computation,
where all activities must advance to the next phase together.

X10 also provides a rich array sub-language, based in part on the ZPL array
language [Chamberlain, 2001]. An array is a collection of objects which are indexed
by points in an arbitrary bounded region. A key data structure in X10 is the distributed
array. Each element in a distributed array is assigned to a particular place according
to the array distribution, which is a mapping from point to place. Distributed arrays
are very general in scope: they allow for arbitrary distributions (for example, block,
block-cyclic, recursive bisection, fractal curve) and arbitrary regions (for example
dense or sparse, rectangular, polyhedral or irregular). X10 is also designed using the
multi-resolution approach, so the array library and runtime are largely implemented
using lower-level language constructs of X10.

X10 supports first class functions called closures (in the tradition of the Scala

§2.4 Asynchronous Partitioned Global Address Space Models 19

language). The X10 code example in figure 2.6 demonstrates the use of a first class
function to evaluate an expectation value for a two-particle property of a molecular
ensemble. The closure radialDistribution() (lines 17-18) is defined to calculate

1 public class MolecularEnsemble {
2 val mols:Array[Molecule](1);
3 ...
4 public def expectationValue(
5 twoParticleFunction:(a:Molecule,b:Molecule) => Double
6):Double {
7 var total:Double = 0.0;
8 for ([i] in mols)
9 for ([j] in mols)

10 if (i != j) {
11 total += twoParticleFunction(mols(i), mols(j));
12 }
13 val N = mols.size;
14 return total / (N*(N-1));
15 }
16 }
17 val radialDistribution =
18 (a:Molecule,b:Molecule) => b.center.distanceFrom(a.center);
19 val ensemble:MolecularEnsemble = ...;
20 val mu = ensemble.expectationValue(radialDistribution);

Figure 2.6: X10 code demonstrating the use of a first class function to evaluate the expectation
value of the two-particle function radialDistribution() for a molecular ensemble

the distance between two molecules. It is passed to the method expectationValue()
(lines 4–16), which executes the closure over all pairs of molecules in the system and
returns the average (expectation) value. The same expectationValue method could
be used to calculate any two-particle property of the ensemble, simply by passing it
a different closure.

X10 addresses the issue of load balancing through work-first work stealing be-
tween worker threads at each place [Tardieu et al., 2012]. The X10 global load balancing
framework [Saraswat et al., 2011] extends this approach to work stealing between
places using lifeline graphs for distributed termination detection. The local (shared
memory) and global (distributed memory) work stealing implementations have not
yet been integrated.

X10 provides a global reference type GlobalRef, and a PlaceLocalHandle type
which provides a globally usable reference to a unique object at each place. The
issue of distributed garbage collection is solved using a Global Object Tracker which
maintains a record of all remote references to globalized objects [Kawachiya et al.,
2012].

X10 provides two compilation paths using source-to-source compilation: Managed
X10, which generates Java code to run on a standard Java virtual machine (JVM) with
an X10 runtime library; and Native X10, which compiles to C++ and is compiled to a

20 Programming Models and Patterns for High Performance Scientific Computing

binary application using a standard C++ compiler. Communication between places
is handled by X10RT, a C++ library implementation of the X10 runtime layer. There
are several implementations of X10RT which use different communication methods
including sockets, MPI, PAMI (for use on Blue Gene and Infiniband interconnects),
and a stand-alone implementation to support multiple places on a single host. These
implementations make it possible to run multi-place X10 programs on a wide range
of computer systems.

While X10’s parallel primitives support productive programming, they are not
sufficient. Issues arise regarding efficient implementation of the primitives to pro-
vide acceptable performance on modern computer architectures; furthermore, pro-
ductive programming requires reusable distributed data structures that support high-
performance operations. These issues will be considered in chapter 3.

2.4.1.1 Active Messages in X10

X10 supports the active message idiom (see §2.1.3), which combines data transfer and
remote computation within a single message; this allows for the terse expression of
many distributed algorithms using localized patterns of communication and synchro-
nization. This simple idea is at the core of the APGAS programming model: the X10
and Chapel languages have supported active messages since their inception, and ac-
tive messages have been proposed as extensions for UPC [Shet et al., 2009], Co-Array
Fortran [Scherer et al., 2010], and the Global Arrays library [Chavarría-Miranda et al.,
2012].

In X10, the computation initiated by an active message may include synchroniza-
tion with other activities running at the target place. The code in figure 2.7 uses active
message synchronization to implement a single-slot buffer. Activity 1 sends an active
message (lines 6–11) to the home place of a buffer, which fills the buffer with a value
of type T. Activity 2, already running at the buffer’s home place, waits for the buffer
to be filled (line 16), and then removes and computes on the value.

In Chapter 3 we show how synchronization in active messages may be used to
implement an efficient update algorithm for ghost regions in distributed arrays.

2.4.1.2 X10 Global Matrix Library

The X10 Global Matrix Library (GML) was developed to support distributed linear
algebra in X10. It provides a variety of single-place and distributed matrix formats for
dense and sparse matrices, and implements linear algebra operations for these matrix
formats. High-level operations operate on entire matrices and are intended to support
a programmer writing in a sequential style while fully exploiting available parallelism.
Operations for single-place dense matrices are implemented as wrappers around the
Basic Linear Algebra Subroutines (BLAS) [Blackford et al., 2002] and Linear Algebra
PACKage (LAPACK) [Anderson et al., 1995] routines; more complex operations are
implemented in X10 using the simple operations as building blocks. GML has been
used to implement various machine learning algorithms including linear regression
and PageRank [Page et al., 1999], and has been extended to tolerate loss of resources

§2.4 Asynchronous Partitioned Global Address Space Models 21

1 val buffer:Buffer;
2 val bufferRef:GlobalRef[Buffer];
3 ...
4 // activity 1
5 val v:T = ...;
6 at(bufferRef.home) async {
7 val buffer = bufferRef();
8 when(!buffer.full) {
9 buffer.put(v);

10 }
11 }
12 ...
13 // activity 2 at buffer home
14 async {
15 val v:T;
16 when(buffer.full) {
17 v = buffer.remove();
18 }
19 computeOn(v);
20 }

Figure 2.7: X10 code using active messages to implement a single-slot buffer

at runtime [Hamouda et al., 2015]. GML is used in the work described in chapter 4
of this thesis.

2.4.2 Habanero Java

Early versions of the X10 specification were closely based on the Java programming
language. This early design led to the development at Rice University of the Habanero
Java language, an extension of Java for the APGAS programming model [Cavé et al.,
2011]. Habanero Java includes the same parallel constructs as X10 (with some differ-
ences in naming), as well as sequential extensions for multidimensional arrays and
efficient complex arithmetic. Where X10 provides clocks, Habanero Java provides a
more general phaser accumulator, which is a unification of collective and point-to-point
synchronization, including support for reduction [Shirako and Sarkar, 2010]. Yan et al.
[2010] developed hierarchical place trees in Habanero Java, as a generalization of X10
places which maps more closely to the deep memory hierarchies on modern com-
puter architectures. Habanero Java is an important vehicle for research into runtime
implementation and compiler optimizations for APGAS languages; many techniques
developed for it are directly applicable in X10, and vice versa.

2.4.3 Chapel

Chapel [Chapel, 2014] was developed by Cray Inc. to allow programmers to express
a global view of parallel algorithms. Chamberlain et al. [2007] argue that this is a

22 Programming Models and Patterns for High Performance Scientific Computing

necessary evolution from the fragmented view of computation inherent in the MPI
programming model, in which programs are described on a per-task basis, explicitly
dividing computation and data into per-task portions.

Chapel represents locality through the locale type. A locale represents one or more
co-located processing elements with associated local storage, for example a single
cluster node. Data and tasks can be specifically assigned to locales. Domain maps
support arbitrary mappings from array indices to locales, allowing the decomposition
of array data and computations. Figure 2.8 demonstrates the use of Chapel domain
maps to distribute array data between locales. The code computes the DAXPY op-
eration Y = αX + Y. Line 2 defines the domain for the distributed arrays x and y,
block-distributed over locales. Line 5 uses scalar promotion of the multiplication and
addition operators over the arrays to specify the operation in a single line of code.
This is equivalent to a parallel loop over all indexes in the index set of the domain,
performing the DAXPY operation on corresponding elements of the arrays. As in
this simple example, Chapel is able to express many distributed array computations
succinctly.

1 config const N = 1000000, alpha = 3.0;
2 const VecDom: domain(1) dmapped Block({0..#N}) = {0..#N};
3
4 proc daxpy(x:[VecDom] real, y:[VecDom] real):int {
5 y = alpha * x + y;
6 }

Figure 2.8: Chapel code demonstrating domain map and scalar promotion in computation of
DAXPY over vectors

Chapel is designed on the principle of multi-resolution, meaning that high-level
language features are implemented in terms of lower-level features that are not hid-
den from the programmer. For example, high-level data-parallel abstractions are
implemented using the lower-level features of tasking and locality control. This per-
mits the programmer to use high-level features for productive development, while
retaining fine control for performance critical code [Chamberlain et al., 2011].

Chapel supports interoperability with other languages including C, C++, Fortran,
Java and Python, through interface definitions for the Babel framework [Epperly
et al., 2011]. Data structures such as local and distributed arrays may be shared
between codes of different languages, but all communication is handled by the Chapel
runtime [Prantl et al., 2011].

2.4.4 Fortress

Fortress [Allen et al., 2008] was developed by Sun under the HPCS program as a par-
allel programming language and framework for design of domain-specific languages.
It compiles to Java bytecode and runs on an unmodified JVM, with the addition of
Fortress runtime library code. The Fortress syntax is intended to mirror mathematical

§2.5 Quantum Chemistry 23

notation, supporting Unicode characters and two-dimensional notation. Mathemati-
cal notation may be coded using ASCII shorthand notation and is typeset for display.
For example, the definition of the factorial function [Allen et al., 2008]:

factorial(n) = PROD[i <- 1:n] i

would be rendered for display as:

f actorial(n) = ∏
i←1:n

i

This is intended to make it easier for scientists to compare code with formulae
and switch between the two during development.

Fortress is implicitly parallel, intentionally requiring more effort to implement
an explicitly sequential version of an algorithm. The primary form of parallelism is
divide-and-conquer; for example, a for loop is recursively divided into sub-tasks that
may be executed on different processing units. Explicit task parallelism is also sup-
ported. The Fortress runtime uses Cilk-style work stealing to balance load between
processors.

Fortress provides information to programs about the execution environment
through the region data structure. A region in Fortress holds information about hard-
ware resources and relative communication costs. Aggregate data structures such as
distributed arrays are mapped to regions through the mechanism of a distribution.

As the development of Fortress suffered from a lack of funding, and active devel-
opment ceased in 2012, there is a lack of compelling application examples in scientific
computing. Although a high-performance implementation of the entire language was
never completed, Fortress included a number of interesting features, for example, its
mathematical syntax and typesetting (jokingly described as ‘run your whiteboard’),
conditional inheritance and method definition, and integrating physical units into the
type system. Some of these concepts may find future application in other languages
for scientific and parallel programming.

2.5 Quantum Chemistry

Quantum chemistry uses quantum mechanical principles to model the nuclei and
electrons that constitute a molecule. The time-independent Schrödinger equation,

H Ψ = EΨ, (2.1)

is the fundamental equation of quantum chemistry and relates the energy of a system
described by wavefunction Ψ to the Hamiltonian operator H over the constituent
particles. The electronic Schrödinger equation describes the wavefunction of the
electrons in a molecular system according to the Hamiltonian,

He = −
1
2 ∑

i
∇2

i −∑
i, A

ZA

riA
+ ∑

i>j

1
rij

, (2.2)

24 Programming Models and Patterns for High Performance Scientific Computing

in which the first sum represents the kinetic energy of the electrons, the second
represents Coulomb attraction between the electrons and nuclei, and the third sum
represents repulsion between electrons. The electronic wavefunction of a molecu-
lar system allows the calculation of the potential energy surface for the nuclei and
many important properties including stable conformations, active sites, ionization
potentials, and spectral properties.

The Hartree–Fock approximation [Fock, 1930] expresses the electronic wavefunc-
tion |Ψ〉 in the form of a linear combination of permutations of one-electron spin
orbitals χi, conveniently represented as a Slater determinant:

|Ψ〉 = 1√
N!

∣∣∣∣∣∣∣∣∣∣∣

χ1(1) χ2(1) . . . χa(1) . . . χN(1)

χ1(2) χ2(2) . . . χa(2) . . . χN(2)
...

...
...

...

χ1(N) χ2(N) . . . χa(N) . . . χN(N)

∣∣∣∣∣∣∣∣∣∣∣
. (2.3)

Each spin orbital is the product of a spatial orbital ψi and a spin function α or β.
The Hartree–Fock energy,

E0 = 〈Ψ0 |H |Ψ0〉 , (2.4)

is an upper bound on the ground state energy of the system. According to the
variational principle, the ‘best’ spin orbitals to use are those which minimize the
Hartree–Fock energy [Szabo and Ostlund, 1989].

In this thesis, we will consider only restricted closed-shell Hartree–Fock calcula-
tions, in which each spatial orbital is doubly occupied by electrons of opposing spin
values, hence the wavefunctions are calculated over spatial orbitals only. The spatial
molecular orbitals ψi are usually expanded in the basis of a set of atomic orbitals φj,

ψi(r) = ∑
j

cijφj(r), (2.5)

where the cij are the molecular orbital coefficients. Most quantum chemical calcula-
tions are performed using Gaussian-type atomic orbitals of the form:

φ(r− R) = N(x− Ax)
k(y− Ay)

m(x− Az)
ne−α|r−R|2 , (2.6)

where R is the orbital center, N is a normalization factor and x, y, z are the Cartesian
components of r.

2.5.1 The Self-Consistent Field Method

The self-consistent field method (SCF) is a foundational method in quantum chem-
istry, and is widely used in computational chemistry packages such as GAMESS (US)
[Schmidt et al., 1993], Gaussian [Frisch et al., 2009], NWChem [Valiev et al., 2010] and
Q-Chem [Shao et al., 2013].

The SCF procedure requires the solution of the pseudo-eigenvalue problem [Szabo

§2.5 Quantum Chemistry 25

and Ostlund, 1989]
FC = εSC, (2.7)

where ε is a diagonal matrix of the orbital energies and F, C and S are the Fock,
molecular orbital Coefficient and Overlap matrices respectively, the dimensions of
which are dependent on the number of basis functions used to represent the molecular
system, and therefore indirectly on the number of atoms in the system. The overlap
matrix S is a constant Hermitian matrix composed of the overlap integrals between
pairs of basis functions:

Sµν =
∫

dr1 φ∗µ(1)φν(1). (2.8)

The Fock matrix F is dependent on C, which necessitates use of an iterative pro-
cedure to solve (2.7). This procedure is defined by the so-called Roothaan–Hall
equations [Roothaan, 1951; Hall, 1951]:

Fµν = Hcore
µν + ∑

λσ

Pλσ[(µν|λσ)− 1
2
(µσ|λν)] (2.9)

Pµν = 2 ∑
i

CµiC∗νi (2.10)

(µν|λσ) =
∫ ∫

dr1 dr2 φ∗µ(1)φν(1)
1

r12
φ∗λ(2)φσ(2) (2.11)

Hcore
µν =

∫
dr1 φ∗µ(1)(

1
2
∇2

1 −∑
A

ZA

r1A
)φν(1) (2.12)

Starting with an initial guess for the density matrix P, the procedure solves the
density matrix that minimizes the energy for a given molecular system. The most
expensive part in the SCF procedure is the creation of the Fock matrix (2.9), where µ,
ν, λ, σ denote atom-centered basis function indices, (µν|λσ) is a four-centered two-
electron integral (2.11), and Hcore is a matrix containing one-electron integrals (2.12).

The Fock matrix represents the single-electron energy operator in the chosen basis
set. It comprises two components: the Coulomb or J matrix representing the Coulomb
operator,

Ĵj(1) =
∫

φj(2)∗
1

r12
φj(2) dr2 , (2.13)

and the Exchange or K matrix representing the exchange operator,

K̂j(1)φi(1) =
(∫

φj(2)∗
1

r12
φi(2) dr2

)
φj(1). (2.14)

Given these components and the one-electron Hamiltonian ĥ(1), the Fock operator is
defined [Szabo and Ostlund, 1989, §3.4.1] as

F̂(1) = ĥ(1) + ∑
j

[
2 Ĵj(1)− K̂j(1)

]
. (2.15)

In principle, formation of the Fock matrix is an O(N4) operation, for a molecu-

26 Programming Models and Patterns for High Performance Scientific Computing

lar system represented using N basis functions. For large molecules, however, the
distances between centers means many integrals are small enough that they may be
safely neglected (screened), reducing the actual cost of calculation to O(N2) [Dy-
czmons, 1973]. For small molecules, the computed two-electron integrals may be
stored and reused between iterations of the SCF, however, for larger molecules this is
infeasible and the integrals must be directly evaluated on each iteration as they are
built into the Fock matrix [Lüthi et al., 1991].

The individual two-electron integrals can be computed independently, but incur
vastly different computational costs. Further, each two-electron integral contributes
to up to six different locations in the Fock matrix [Lüthi et al., 1991]. Overall, this
problem is characterized by load imbalance in the evaluation of the two-electron inte-
grals and random scatters to memory elements in the F matrix. The SCF procedure
also requires a matrix diagonalization of size N, and other linear algebra operations.
For moderately sized systems, the cost of these operations is negligible compared to
the cost of computing the F matrix.

While the fundamentals of the self-consistent field method may be expressed as
familiar linear algebra operations, it presents two key challenges for parallel imple-
mentation for distributed systems:

• Key data such as the density matrix may be too large to fit in main memory
of a single cluster node and must be distributed; however, these data must be
globally accessible.

• Many intermediate quantities – the two-electron integrals – must be computed.
The computation time required for each integral is highly irregular, requiring
dynamic load balancing.

These challenges motivated the development of the Global Arrays library [Nieplocha
et al., 2006a], which enabled one of the first distributed SCF implementations [Harri-
son et al., 1996].

Because of the fundamental nature of SCF to quantum chemistry and its inclusion
in widely used software packages, it is a natural target application when consider-
ing programming models for scientific computing. Shet et al. [2008] explored the
programmability of the Chapel, X10 and Fortress languages using SCF as an appli-
cation example. They considered different methods for load balancing tasks for the
creation of the Fock matrix including static, dynamic language-managed and dy-
namic program-managed load balancing. Their work focused on the expression of
parallelism and array computations in the different languages. However, no concrete
implementation of the same was provided due to the immaturity of the languages at
the time of their work.

2.5.2 Resolution of the Coulomb Operator

The major factor limiting scaling of electronic structure calculations to larger problem
sizes is the coupling between all pairs of electrons due to Coulomb and exchange
interactions. Even after the application of screening techniques for large molecules,

§2.5 Quantum Chemistry 27

there are O(N2) two-electron integrals where N is the molecule size (number of
atoms). Several linear-scaling methods have been proposed which have complex-
ity O(N) [Ochsenfeld et al., 2007]. These include the Continuous Fast Multipole
Method [White et al., 1996], which divides charge distributions hierarchically in a
tree and approximates interactions between distant distributions by multipole ex-
pansions; and the KWIK algorithm [Dombroski et al., 1996], which partitions the
Coulomb interaction into a short-range part to be solved directly, and a long-range
part to be solved in Fourier space.

Limpanuparb [2012] showed that a two-center function like the Coulomb potential
L(r12) =

1
r12

or the long-range Ewald potential L(r12) =
erf(ωr12)

r12
may be resolved into

a sum of products of one-center spherical functions

L(r12) =
∞

∑
n=0

∞

∑
l=0

l

∑
m=−l

φnlm(r1)φnlm(r2) ≡
∞

∑
k=1

φk(r1)φk(r2). (2.16)

This infinite series may be truncated to a finite sum by truncating the radial resolution
n after N ′ terms and the angular resolution after L terms:

L(r12) ≈
N ′

∑
n=0

L
∑
l=0

l

∑
m=−l

φnlm(r1)φnlm(r2) ≡
K
∑
k=1

φk(r1)φk(r2). (2.17)

where K = (N ′ + 1)(L+ 1)2 and k = n(L+ 1)2 + l(l + 1) + m + 1. It is therefore
possible to replace the calculation of two-electron integrals with the sum of products
of one-electron overlap integrals:

(µν|λσ) ≈
K
∑
nlm

(µν|nlm)(nlm|λσ). (2.18)

Limpanuparb et al. [2013] showed that both Coulomb and long-range Ewald
potentials can be resolved into one-electron functions of the form

φnlm(r) = qn jl(λnr)Ylm(r), (2.19)

where jl(t) is a spherical Bessel function and Ylm is a real spherical harmonic, and
provided efficient recurrence relations to compute the auxiliary integrals

(µν|nlm) =
∫

χµ(r)χν(r)φnlm(r) dr, (2.20)

and demonstrated that the accuracy of the resolution can be controlled using a single
threshold parameter THRESH, which determines the number of terms N ′ and L at
which to truncate the radial and angular parts of the resolution so as to guarantee an
error in the energy of no more than 10−THRESH. Substituting (2.18) into the definitions
of J and K matrices (2.13)–(2.14) yields the resolution of the Coulomb operator (RO)

28 Programming Models and Patterns for High Performance Scientific Computing

expressions:

Jµν ≈
K
∑
nlm

(µν|nlm)Dnlm (2.21)

Dnlm =
N2

∑
λσ

Pλσ(nlm|λσ) (2.22)

Kµν ≈ 2
O

∑
a

K
∑
nlm

(µa|nlm)(nlm|aν) (2.23)

(µa|nlm) =
N

∑
λ

Cλa(µλ|nlm) (2.24)

Computation of the Fock matrix using RO requires evaluation of O(N2KO) in-
tegrals, where N is the number of basis functions and O is the number of occupied
orbitals. For large molecules, the number of significant shell pairs scales linearly with
the size of the molecule, and therefore screening methods may be used to reduce the
computational complexity to O(NKO) [Limpanuparb, 2012] — quadratic in the size
of the molecule. When increasing the quality of the basis set for a given molecule,
KO may be regarded as a constant; however, screening strategies are not as effective
in reducing the number of significant shell pairs, meaning that computation time is
still almost quadratic in the number of basis functions.

RO can be used to compute the full Hartree–Fock energy for a molecule, how-
ever, this is typically expensive in comparison to alternative methods. Instead, the
energy may be partitioned into a short-range and a smooth long-range component,
for example using the Ewald partition [Limpanuparb et al., 2013]. RO may be used to
evaluate the long-range component, while the short-range component of the energy
can be evaluated efficiently by other means such as screening methods [Izmaylov
et al., 2006]. The RO method of computing contributions to the Fock matrix is the
same whether computing long-range or full Hartree–Fock energy.

RO will be used in chapter 4 as the basis for a distributed implementation of a
complete Hartree–Fock calculation.

2.6 Molecular Dynamics

Molecular dynamics considers the behavior of systems of atoms2 interacting by means
of classical forces. Simulating whole atoms rather than individual electrons and nuclei
allows the treatment of larger numbers of particles and timescales than is possible
with quantum chemistry.

A molecular dynamics simulation is governed by a force field that defines the
different types of interactions between particles. Bonded interactions such as bond
stretch, bond angle and torsional terms approximate the influence of valence electrons
in chemical bonds. Non-bonded interactions such as van der Waals and Coulomb

2or residues, multi-atom portions of a larger molecule

§2.6 Molecular Dynamics 29

forces approximate long-range effects between atoms that are not joined by chemical
bonds. Molecular dynamics has successfully been used to treat a range of problems
including molecular structure, dielectric constants of protein solutions, ion channel
configurations, and enzyme free binding energies [Hansson et al., 2002].

2.6.1 Calculation of Electrostatic Interactions

Just as in quantum chemistry, the most expensive part of molecular dynamics simu-
lation is typically the calculation of long-range Coulomb interactions (also known as
electrostatic forces). The electrostatic potential of a particle with charge qi at ri due to
n other charged particles is:

Φi =
n

∑
j=1

kqiqj

|rj − ri|
(2.25)

It is apparent from the above definition that a particle interacts with all other
particles in the system, and furthermore that the strength of the interaction decreases
only slowly with distance (as r−1 for the potential, and as r−2 for the force). Exact so-
lution requires the calculation of forces and potentials between every pair of particles
in the system, a complexity of Θ(N2). Such a calculation quickly becomes infeasible
for large numbers of particles. While purpose-built architectures can accelerate the
pairwise calculations [Susukita et al., 2003; Shaw et al., 2009], the basic complexity
remains unchanged. Some method of approximation is necessary to scale to larger
systems; two such methods are the particle mesh Ewald method (PME) and the fast
multipole method (FMM).

2.6.2 Particle Mesh Ewald Method

The Smooth particle mesh Ewald method (PME) [Darden et al., 1993; Essmann et al.,
1995] is used to evaluate electrostatic interactions in systems with periodic boundary
conditions. The electrostatic energy is partitioned as E = Edir + Erec + Ecorr, where
the direct energy

Edir =
1
2

∗
∑
n

N

∑
i,j=1

qiqj erfc(β|rj − ri + n|)
|rj − ri + n| (2.26)

is the short-range interaction that is calculated directly, and the reciprocal energy

Erec =
1

2πV ∑
m 6=0

exp(−π2m2/β2)

m2 S(m)S(−m) (2.27)

is the long-range interaction that is calculated in reciprocal space. Ecorr is a correction
due to self-interactions.

The algorithm comprises several steps:

1. approximation of a charge density field Q by interpolating charges on a mesh of
grid points using B-splines (see figure 2.9);

30 Programming Models and Patterns for High Performance Scientific Computing

Figure 2.9: Charge interpolation in the particle mesh Ewald method: point charges (grey,
dashed lines) are interpolated to nearby grid points (red).

2. calculation of the inverse FFT F−1(Q) of the charge array;

3. multiplication of the inverse charge array F−1(Q) with an array F−1(Θrec) rep-
resenting the reciprocal space pair potential;

4. transformation of the result by a forward FFT to give the convolution of Θrec ?Q;

5. calculation of the reciprocal potential as the entrywise product (Θrec ? Q) ◦Q;

6. direct calculation of the short-range interaction within a reduced domain; and

7. correction to cancel the self-interaction of each particle.

Reciprocal forces and potentials are evaluated at grid points and interpolated to
each particle. While steps 1–5 above must be performed in order, they are indepen-
dent of steps 6 and 7 which may be performed in parallel. The core of the method
is the two 3D fast Fourier transforms (FFTs) (inverse and forward) in steps 2 and
4 above. While the theoretical computational scaling is O(N log N), a distributed
3D FFT requires all-to-all communication, which means that communication is the
limiting factor in scaling the method.

Three factors affect the accuracy of the method:

• the cutoff distance for evaluation of direct interactions, where a longer cutoff
increases the accuracy of the short-range component of the force/energy but
requires more direct calculation and communication of more particle data;

• the order of B-spline interpolation. Typically each charge is interpolated over a
small number of grid points (e.g. four) in each dimension, but higher-order inter-
polation increases the accuracy of the long-range component of the force/energy,
at the cost of increased computation; and

§2.6 Molecular Dynamics 31

• the grid spacing, where closer spacing increases the accuracy of the long-range
component at the cost of increased computation and memory use. Typical grid
spacings are on the scale of mean pair distances e.g. around 1.0 Å for molecular
dynamics.

The choice of these parameters allows a tradeoff between speed and accuracy accord-
ing to the requirements of the simulation.

There are a number of software packages for molecular dynamics (MD) that
include implementation of PME. An efficient implementation is included in GRO-
MACS [Pronk et al., 2013], which is a free software package for molecular simulation,
primarily intended for use on small- to medium-sized compute clusters. GROMACS
supports parallelism using both MPI and OpenMP. The Ewald partition is divided
between two sets of nodes: many nodes evaluate the direct part while a smaller
set evaluate the reciprocal part [Hess et al., 2013]. The evaluation of direct interac-
tion (2.26) uses table-based interpolation of the complementary error function erfc,
which gives higher performance than standard computation using series expansion.
Reciprocal space evaluation including FFTs uses a 2D ‘pencil’ decomposition, and
the number of nodes is limited to improve parallel scaling. GROMACS also supports
other methods for the calculation of long-range electrostatics, including full pairwise
interaction, cutoff-based interactions and Particle-Particle Particle-Mesh (P3M).

2.6.3 Fast Multipole Method

The fast multipole method (FMM) [Greengard and Rokhlin, 1987] is of interest for
large-scale molecular dynamics simulation, due to its low computational complexity
of O(N) where N is the number of particles (compared to O(N log N) for PME).
FMM gives rigorous error bounds for the calculation of potential and forces, in con-
trast to particle-mesh methods, where only an error estimate may be available [De-
serno and Holm, 1998]. This well-defined error behavior makes FMM a suitable choice
for applications where provable accuracy is required. Also in contrast to particle-mesh
methods, FMM does not require periodic boundary conditions, although it has been
extended for such systems [Lambert et al., 1996; Kudin and Scuseria, 1998].

In the 3D FMM [Greengard and Rokhlin, 1997], the simulation space is divided
into an octree: a tree of cubic boxes in which each box is recursively divided into eight
child boxes. The recursion ends when either a maximum predefined tree depth Dmax

is reached, or the number of particles in a box is below a certain density threshold.
Interactions between particles in nearby leaf boxes are evaluated directly, whereas
distant interactions are evaluated by means of series expansions around box centers
or equivalent densities.

There are many different choices of series expansion for the fast multipole method,
including spherical harmonics [White and Head-Gordon, 1994], plane wave expan-
sions [Greengard and Rokhlin, 1997], equivalent charges [Ying et al., 2004] and Carte-
sian Taylor expansions [Yokota, 2013]. The different expansions and operations have
different computational and memory complexity with regard to the order of expan-
sion (and consequent accuracy). Spherical harmonics with rotation-based translation

32 Programming Models and Patterns for High Performance Scientific Computing

and transformation operations have the lowest asymptotic complexity, with relatively
high sequential overhead [Yokota, 2013].

FMM is characterized by irregular, but highly localized data access patterns. The
algorithm comprises several steps:

1. generation of multipole expansions from particles in each leaf box (P2M);

2. a post-order traversal3 (upward pass) combining multipole expansions at higher
levels in the tree (M2M);

3. transformation of the multipole expansions to local expansions for well-separated
boxes (M2L);

4. a pre-order traversal4 (downward pass) translating and adding parent local
expansions to child boxes (L2L);

5. evaluation of far-field interactions for all particles in leaf boxes using the local
expansion for each box (L2P); and

6. direct evaluation of near-field interactions between particles in non-well-separated
boxes (P2P).

The fast multipole method allows a priori calculation of strict error bounds [White
and Head-Gordon, 1994]. The tradeoff between accuracy and computation time is
controlled by parameters to the algorithm:

• the number of terms p in the multipole and local expansions, where a larger
number of terms results in greater accuracy and computational cost;

• the maximum depth of the tree Dmax or the maximum number of particles per
lowest-level box q, where a larger Dmax (or smaller q) means more interactions
are computed using far-field approximation rather than direct evaluation; and

• the definition of well-separated i.e. the number of box side lengths ws between
a pair of boxes, where ws = 1 is the minimum and larger values of ws mean
more interactions are computed using direct evaluation.

There are many published implementations of FMM, which differ in both algo-
rithm and technology (programming language, libraries) used to implement them.

The exaFMM [Yokota, 2013] package is a state-of-the-art implementation of FMM
that uses Cartesian Taylor expansions and is optimized for low accuracy (≤ 3 deci-
mal digits) calculations. It is claimed as the fastest sequential implementation of the
FMM [Taura et al., 2012], and as an order of magnitude faster than competing codes
on a single Intel node [Yokota, 2013]. Single-precision arithmetic is used, and the
number of terms, p, in expansions is a compile-time constant, which enables tem-
plate meta-programming with specialization for low p. Although Cartesian Taylor

3In a post-order traversal, parent nodes in the tree are visited after their children.
4In a pre-order traversal, parent nodes in the tree are visited before their children.

§2.6 Molecular Dynamics 33

expansions have a higher asymptotic complexity (O(p6)) compared to spherical har-
monics (O(p3)), they are always faster for low p due to smaller prefactors. exaFMM
has been parallelized using data-driven execution and work stealing within a single
node [Ltaief and Yokota, 2012].

The Kernel-Independent Fast Multipole Method (KIFMM) is a generalization
of the fast multipole method for any second-order elliptic partial differential equa-
tion [Ying et al., 2003]. Instead of analytic expansions of the kernel function, it
requires only kernel evaluations, which are used to construct equivalent densities on
a cube or sphere. A series of papers using KIFMM describe octree construction with
the DENDRO multigrid library and show how FMM tree construction may be scaled
to very large numbers of particles and processes [Sundar et al., 2007, 2008; Lashuk
et al., 2009].

2.6.4 Molecular Dynamics Simulation of Mass Spectrometry

Mass spectrometry is used to identify charged chemical species within a sample of
material by measuring differences between their motions within a magnetic or electric
field. Within biological chemistry, Fourier transform ion cyclotron resonance mass
spectrometry (FTICR-MS) is widely used as it allows high resolution between species,
small sample sizes and a choice of ionization methods [Marshall et al., 1998]. The
mass-to-charge (m/q) ratios of the species in a sample are determined by measuring
the current induced by cyclotron motion of the ions in a radially confining magnetic
field. The induced current signal is a superposition of sine waves corresponding to
the cyclotron frequencies of each species; these frequencies are extracted by Fourier
transform.

A charged particle moving at velocity v in a uniform magnetic field follows a
circular path due to the Lorentz force. In theory the measured frequency for a species
of ion corresponds exactly to the mass-to-charge ratio according to the cyclotron
equation:

νc =
1

2Π
qB
m

, (2.28)

where q and m are the ion charge and mass and B is the strength of the confining
magnetic field. In FTICR-MS, ions are constrained within a Penning trap, the key fea-
tures of which are shown in figure 2.10. The trap combines a uniform magnetic field
to confine the ions to radial motion with a non-uniform electric field that constrains
axial motion.

In practice there are a number of features of the apparatus that can cause a re-
duction in the measured frequencies. It is infeasible to generate a radially symmetric
electric field; angular non-uniformity in this field means the measured frequency is
dependent on the cyclotron radius of the particles. Ions experience a drag due to
interaction with the image charge on the detector plates. Furthermore, there is a
space-charge effect due to repulsion between ions which is dependent on the confin-
ing fields, number of ions and the relative m/q of the different species. Computer

34 Programming Models and Patterns for High Performance Scientific Computing

radial confinement field
B

axial trapping potential
0 V

T
a/2

-a/2

y=0

induced alternating current

+
+

+
+

+

+
+

++
++

+

Figure 2.10: Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: diagram of
Penning Trap

§2.7 Application Patterns 35

simulation has aided in understanding these effects, as it allows precise control of
system parameters that may be difficult or impossible to control in experiment.

In addition to the influence of the trapping field and the ion-image interaction,
each ion experiences a repulsive Coulomb force from every other ion in the packet.
As with molecular dynamics simulation discussed above, the calculation of these
forces is nominally Θ(N2), which makes the simulation of large ion packets infeasible
unless some approximation is used to reduce the computational complexity.

Early simulations of ion trajectories in FTICR-MS focused on single-ion behav-
ior, ignoring Coulomb interactions. Recent simulations model Coulomb interactions
using either virtual particles [Fujiwara et al., 2010] or particle-in-cell approxima-
tions [Nikolaev et al., 2007; Leach et al., 2009; Vladimirov et al., 2011]. There appears
to have been little consideration of the accuracy of electrostatic force evaluation. Chap-
ter 5 will demonstrate the use of FMM for evaluation of ion-ion interactions, which
allows the calculation of strict bounds on the truncation error for both force and
potential calculations.

2.7 Application Patterns

Following an idea proposed by Colella [2004], researchers at the Berkeley Parallel Pro-
gramming Laboratory identify a collection of thirteen ‘dwarfs’5 (see table 2.1) which
represent patterns of computation and communication found in typical scientific and
engineering applications. The dwarfs

“... constitute classes where membership in a class is defined by similarity
in computation and data movement. The dwarfs are specified at a high
level of abstraction to allow reasoning about their behavior across a broad
range of applications. Programs that are members of a particular class
can be implemented differently and the underlying numerical methods
may change over time, but the claim is that the underlying patterns have
persisted through generations of changes and will remain important into
the future.” [Asanovic et al., 2006]

The co-design process described in this thesis uses application requirements to
guide language and runtime design (and vice versa). It is therefore important that
the applications used reflect real-world requirements for high-performance scientific
computing. As a single co-design effort can only cover a small set of application
codes, it is necessary to make generalizations from such a set to a broader range of
applications.

5also known as ‘motifs’

36
Program

m
ing

M
odels

and
Patterns

for
H

igh
Perform

ance
Scientific

C
om

puting
Table 2.1: The ‘thirteen dwarfs’: patterns of communication and communication in scientific and engineering applications. (Following
Asanovic et al. [2006].)

Name Description Example Code

1. Dense Linear Algebra Data stored as dense matrices or vectors. Unit stride memory access.
Localized communication, row and column broadcasts.

ScaLAPACK [Blackford et al., 1996],
Elemental [Poulson et al., 2013]

2. Sparse Linear Algebra Data stored as compressed matrices with indexed loads and stores.
Many integer operations for indexing.

PSBLAS [Filippone and Colajanni,
2000]

3. Spectral Methods Data in frequency domain rather than spatial or time domain. De-
pendencies form butterfly patterns. All-to-all communications.

FFTW [Frigo and Johnson, 2005]

4. N-Body Methods Interaction between pairs of points. Hierarchical methods group
points to reduce complexity.

GROMACS [Hess et al., 2008], GAD-
GET [Springel et al., 2001]

5. Structured Grids Data represent a regular grid. High spatial locality. May be subdi-
vided into finer grids (adaptive mesh refinement).

DENDRO [Sundar et al., 2007]

6. Unstructured Grids Data represent an irregular grid with explicit connectivity. Multiple
levels of indirection in data structure.

CHOMBO [Colella et al., 2012]

7. Map-Reduce Large dataset; operations applied to independent elements and re-
sults aggregated.

[Hadoop]

8. Combinational Logic Simple operations on large data; bit-level parallelism. Hashing; encryption

9. Graph Traversal Search over objects in graph structure; indirect memory access; little
floating-point computation.

10. Dynamic Programming Compute a solution by solving simpler overlapping subproblems with
optimal substructure.

Query optimization; DNA sub-
sequence matching

11. Backtrack and Branch & Bound Global optimization by pruning subregions. Boolean satisfiability; combinato-
rial optimization

12. Graphical Models Probabilistic models with random variables as nodes and conditional
dependencies as edges.

Bayesian networks; neural net-
works

13. Finite State Machines System of states connected by input-dependent transitions. Difficult
to parallelize.

Compression; compilers

§2.7 Application Patterns 37

The dwarfs constitute a powerful classification framework which supports such
generalizations. The applications discussed in this thesis correspond to three dwarfs,
which are representative of important classes of scientific application: dense linear
algebra, spectral methods and N-body methods. These dwarfs are described in detail
in the following subsections. Recent application work in X10 is representative of
other dwarfs including sparse linear algebra [Dayarathna et al., 2012a,b], structured
grids [Milthorpe and Rendell, 2012], MapReduce [Shinnar et al., 2012]; graph traver-
sal [Saraswat et al., 2011], and dynamic programming [Ji et al., 2012]. Taken as a whole,
these efforts combined with the work described in this thesis are representative of a
broad range of scientific and engineering applications.

2.7.1 Dense Linear Algebra

The most important and best understood class of computational patterns for sci-
entific applications is dense linear algebra. These patterns use matrix data in a
regular layout in memory, which is accessed using unit stride in one dimension
and regular non-unit stride in the other. Standard APIs have been developed for
commonly-used linear algebra operations, including the BLAS [Blackford et al., 2002]
and LAPACK [Anderson et al., 1995] for which optimized implementations are avail-
able for all high performance architectures. Distributed linear algebra libraries such
as ScaLAPACK [Blackford et al., 1996] and Elemental [Poulson et al., 2013] extend
these efforts to distributed memory systems.

Quantum chemistry applications make heavy use of dense linear algebra, with
tensor contractions, matrix multiplication, and inner products forming the key low-
level operations of many algorithms. Chapter 4 will describe the use of dense linear
algebra operations in the context of such an application, the self-consistent field
method (SCF).

The ubiquity of dense linear algebra has led to its use in the High Performance
Linpack [Petitet et al., 2008] as a metric for ranking high performance computing
systems in the TOP500 rankings [TOP500]. High Performance Linpack performance
is heavily dominated by floating-point computation. Alternative benchmarks have
been proposed that stress other system characteristics such as communication sub-
system [Graph500, 2010; Heroux and Dongarra, 2013]; however, given the ubiquity of
dense linear algebra in scientific and engineering applications it is likely to remain
the most important of the ‘dwarfs’ for the foreseeable future.

2.7.2 Spectral Methods

Spectral methods transform differential equations represented in spatial or time do-
mains into a discrete equation represented in the frequency domain. Such transfor-
mations arise naturally in functions with natural periodicity such as signal processing
applications. Within computational chemistry, spectral methods may be applied to
problems that can be cast into periodic form, such as evaluation of long-range poten-
tials and fields under periodic boundary conditions [Berendsen, 2007, s. 13.10]. The
particle-particle particle-mesh (P3M) method developed by Hockney and Eastwood

38 Programming Models and Patterns for High Performance Scientific Computing

[1988] partitions the potential into a short-range component to be solved directly and
a long-range component solved on a grid using spectral methods; variants of this
method including PME discussed in §2.6.2 are the most commonly used methods in
molecular dynamics simulation of liquids and gases.

Spectral methods are attractive for numerical simulation because their conver-
gence is exponential in the number of series coefficients, minimizing the amount of
memory required to achieve high accuracy approximations [Boyd, 2001, chapter 1].
As they operate on global representation of the data, however, they require all-to-all
communication on distributed architectures, which may limit scaling.

2.7.3 N-body Methods

In molecular dynamics (MD), interactions occur between every pair of particles in
the system. Such pairwise interaction defines molecular dynamics as an N-body
problem, similar to the problem of gravitational interaction. Hierarchical methods
such as particle-mesh and tree codes may reduce the computational complexity from
O(N2) to O(N log N) or O(N). Application codes dealing with N-body problems
have achieved impressive scaling results, including many winners of the Gordon Bell
Prize for scalability and performance (for example [Hamada et al., 2009; Rahimian
et al., 2010; Ishiyama et al., 2012]). MD therefore represents a flagship application for
computational science, and an appropriate target for application co-design.

2.8 Summary

This chapter presented a broad overview of programming models for high perfor-
mance computing, categorizing different approaches primarily by the memory model
— the view of memory provided to the programmer. The partitioned global address
space model was presented as a middle ground between the performance trans-
parency of the distributed memory model and the ease of programming of the shared
memory model. The chapter concluded with a discussion of the asynchronous PGAS
model, which combines the flexibility of task-based parallelism with explicit recogni-
tion of data locality. The X10 programming language which is the focus of this thesis
is representative of the asynchronous PGAS model.

This chapter also presented an overview of important classes of scientific and
engineering application codes. Two examples were selected from the domain of
computational chemistry: quantum chemistry and molecular dynamics simulation.
The use of dense linear algebra, spectral and N-body methods make these codes
representative of broader classes of scientific and engineering applications.

Chapter 3

Improvements to the X10 Language
to Support Scientific Applications

This chapter examines features of the X10 programming language and the APGAS
programming model that support the development of high performance scientific ap-
plications. Comparison is made with analogous features of alternative programming
models including MPI and OpenMP.

In the course of this work, a number of improvements were proposed to the X10
language and runtime libraries, some of which have already been incorporated in pub-
lic releases of X10, and some which are still under discussion. These improvements
include:

• methods for managing and combining worker-local data and for visualizing
locality of parallel tasks (§3.1);

• efficient implementation of active messages and extensions for collective active
messages (§3.2); and

• efficient indexing of local data and support for ghost regions in distributed
arrays (§3.3).

Portions of this chapter have been previously published in Milthorpe et al. [2011]
and Milthorpe and Rendell [2012].

3.1 Task Parallelism

In a task-parallel programming model like APGAS, the program is divided into a set
of tasks to be executed in parallel, each of which has its own execution environment
and may follow a different execution path. In X10, these tasks are lightweight thread
objects called activities. An activity may access data held at the current place, and
may change place using the at statement to access data at another place. At any time
a number of activities may be executing in parallel at a place.

39

40 Improvements to the X10 Language to Support Scientific Applications

Load balancing within a place is supported by a work stealing runtime [Tardieu
et al., 2012]. The runtime maintains a pool of worker threads, each of which processes
a double-ended queue (deque) of activities. A worker thread that creates an activity
adds the activity to the head of its own deque, and once the worker completes an
activity it takes the next activity to be processed from the head of its own deque. Thus
activities are executed by each worker in a last-in, first-out (LIFO) order. When a
worker becomes idle, it attempts to steal work from the tail of another worker’s deque.
The runtime uses cooperative scheduling in which an activity runs to completion
unless it encounters a blocking statement or explicit yield [Grove et al., 2011].

As previously discussed in chapter 2, X10 explicitly represents locality in the
form of places. However, issues of locality also arise in considering data access
patterns within a place, in particular between worker threads executing on a single
cache-coherent multicore node. Reuse of cached data between cores may increase
performance, whereas false or unnecessary sharing of cached data may reduce perfor-
mance. To make efficient use of the memory system of a place, the programmer must
be able to understand the sharing of data within the cache hierarchy. The following
subsections propose two extensions to X10: the first allows the programmer to allo-
cate, manage and combine local copies of data; the second supports the visualization
of tasks executed by each worker thread.

3.1.1 Worker-Local Data

In X10’s APGAS model, any processing element may access memory anywhere in the
global address space. Nevertheless, there are still cases in which it is desirable that
multiple copies of data be maintained, including:

• place-local copies of remotely held data, to avoid communication costs of remote
access; and

• worker-local copies of data, either to avoid synchronization costs (locking) be-
tween worker threads in a uniform memory area, or to avoid costs due to cache
invalidation for worker threads operating on the same data.

In a distributed memory programming model such as MPI, processes may only
access remote data by means of explicit messages. Therefore all data are effectively
place-local, and thread-local data are an orthogonal concern.

Conversely, in a shared memory model such as OpenMP, there is no concept
of remote access or associated communication costs. However, the importance of
thread-local data has been recognized for the reasons described above. OpenMP
clauses such as private, firstprivate and lastprivate specify that a thread-local
copy of a variable should be created for each thread within a team, and allow the
user to control how these are copied from or assigned back to shared data outside of
a parallel region. The reduction clause allows an OpenMP implementation to create
private copies of a reduction variable for each thread in a team, to avoid unnecessary
synchronization within a parallel region.

§3.1 Task Parallelism 41

For example, the following OpenMP code calculates a dot-product in parallel,
which is reduced by a sum operation at the end of the parallel region. The implemen-
tation may create a private copy of the result variable for each thread.

1 double a[n], b[n], result;
2
3 #pragma omp parallel for reduction(+:result)
4 for (i=0; i < n; i++) {
5 result = result + (a[i] * b[i]);
6 }

In X10’s APGAS model, both place-local and worker-local data are useful for
different purposes. They are supported by the classes x10.lang.PlaceLocalHandle
and x10.util.WorkerLocalHandle respectively.

A PlaceLocalHandle provides a unique ID that can be efficiently resolved to a
unique local piece of storage at each place. Initialization of a PlaceLocalHandle is a
distributed operation that runs a remote activity at each place to initialize the storage,
and store a pointer to the storage under its unique ID in a lookup table (natively
implemented as a C++ global variable, or a Java static field). PlaceLocalHandle is
used to implement the x10.regionarray.DistArray class, by providing storage for
the local portion of the array at each place. It may also be used directly in user code
to construct distributed data structures, or to provide replicated data. For example,
the following code replicates the array coeffs to each place, and then performs some
computation at each place using the local copy:

1 val coeffs = new Rail[Double](N);
2 // ...
3 val coeffsHandle = PlaceLocalHandle.make(PlaceGroup.WORLD, () =>

coeffs);
4 // ...
5 finish ateach(place in Dist.makeUnique()) {
6 val localCoeffs = coeffsHandle();
7 compute(localCoeffs);
8 }

Chapter 4 will describe how worker-local and place-local values can be used to
divide a parallel quantum chemistry code into independent tasks for load balanc-
ing between processing elements. The existing x10.lang.PlaceLocalHandle class
provides a suitable base for the implementation of distributed data structures such
as distributed arrays, and was also found to be useful to the application program-
mer. In contrast, the original implementation of WorkerLocalHandle was found to be
unsuitable and required modification as described in the following subsection.

3.1.1.1 Managing and Combining Worker-Local Data

Early versions of X10 included a class, WorkerLocalHandle, which provided worker-
local storage for each worker thread at each place. However, it had a number of
limitations which made it unsuitable for typical parallel patterns:

42 Improvements to the X10 Language to Support Scientific Applications

• it did not support initialization using a different value for each worker;

• there was no way to reset or reduce all worker-local data; and

• too many instances of worker-local data were allocated: instead of allocating
one instance per active worker thread, Runtime.MAX_THREADS instances were
created (the maximum number of worker threads that are permitted at the
place, usually a large number e.g. 1000).

We proposed an improved version of WorkerLocalHandle, which provides a lazy-
initialized worker-local store at each place. It also provides methods to apply a given
closure to all local values at a place (which can be used to reset the storage) and
perform a reduction operation over all local values. As instances are lazy-initialized,
the cost of all-worker operations or reductions is kept to a minimum. Worker-local
storage is limited to objects of reference type; this restriction is necessary to support
lazy initialization. The basic structure of the improved WorkerLocalHandle is given
in figure 3.1.

The X10 Rail class used for the store member variable (lines 5 and 8 of figure 3.1)
is a zero-based, one-dimensional (C-style) array, which supports storage of a number
of worker-local values up to the maximum number of worker threads that may be
created by the runtime. The initLocal function (lines 24–29) sets the initializer
function which is called whenever a worker-local value is lazy-initialized for a worker
thread. When initLocal is called, it also clears worker-local values for all threads so
that they can be reinitialized. The reduceLocal function (lines 46–55 of figure 3.1) can
be used to perform a thread-safe reduction across worker-local values for all workers.

This improved version of WorkerLocalHandle makes it easy to allocate, reset and
combine worker-local data. For example, the following code divides a region into a
set of activities, one per element. Each worker thread computes a partial array result
based on the activities that it handles (lines 2–5), and these are reduced using an array
sum operation (lines 6–9).

1 val result_worker = new WorkerLocalHandle[Rail[Double]](
2 () => new Rail[Double](N)
3);
4 finish for(i in region) async {
5 val partialResult = result_worker();
6 compute(partialResult, i);
7 }
8 val result = result_worker.reduceLocal(
9 (a:Rail[Double],b:Rail[Double]) => a.map(a, b,

10 (x:Double,y:Double)=>(x+y)) as Rail[Double]
11);

The improved implementation of WorkerLocalHandle was incorporated into X10
version 2.4, and was used for all other performance measurements of X10 code pre-
sented in this thesis. Chapter 4 will describe how the improved WorkerLocalHandle
including the reduceLocal function can be used to avoid synchronization in the
calculation of auxiliary integrals in a quantum chemistry code.

§3.1 Task Parallelism 43

1 public class WorkerLocalHandle[T]{T isref, T haszero}
2 implements ()=>T, (T)=>void {
3 private static class State[U]{U isref, U haszero} {
4 public def this(init:() => U) {
5 this.store = new Rail[U](Runtime.MAX_THREADS);
6 this.init = init;
7 }
8 public val store:Rail[U];
9 public var init:()=>U;

10 }
11 private val state:PlaceLocalHandle[State[T]];
12 public operator this():T {
13 val localState = state();
14 var t:T = localState.store(Runtime.workerId());
15 if (t == null) {
16 t = localState.init();
17 localState.store(Runtime.workerId()) = t;
18 }
19 return t;
20 }
21 /**
22 * Set init operation for this worker-local handle; clear current values
23 */
24 public def initLocal(init:()=>T):void {
25 val localState = state();
26 val localStore = localState.store;
27 localStore.clear(); // in case previously initialized
28 localState.init = init;
29 }
30 /**
31 * Apply the given operation in parallel to each worker-local value.
32 */
33 public def applyLocal(op:(t:T)=>void):void {
34 val localStore = state().store;
35 finish for (i in localStore) {
36 val t = localStore(i);
37 if (t != null) {
38 async op(t);
39 }
40 }
41 }
42 /**
43 * Reduce partial results from each worker using the init operation to
44 * create the initial value and return combined result.
45 */
46 public def reduceLocal(op:(a:T,b:T)=>T):T {
47 val localState = state();
48 val localStore = localState.store;
49 var result:T = null;
50 for (i in 0..(localStore.size-1)) {
51 val t = localStore(i);
52 if (t != null) {
53 if (result == null) result = t;
54 else result = op(result, t);
55 }
56 }

Figure 3.1: An improved x10.util.WorkerLocalHandle: key features

44 Improvements to the X10 Language to Support Scientific Applications

3.1.1.2 New Variable Modifiers for Productive Programming

The direct use of the PlaceLocalHandle and WorkerLocalHandle classes as currently
implemented is messy, as it requires the definition and initialization of each instance
using ‘boilerplate’ template code. To support productive programming, we propose
that the definition and initialization of PlaceLocalHandle and WorkerLocalHandle
be supported by new variable modifiers for the X10 language: placeLocal and
workerLocal. For example:

1 val t_worker:WorkerLocalHandle[T];
2 t_worker = new WorkerLocalHandle[T](() => new T(params));

could be written more simply as:

1 workerLocal t_worker:T;
2 t_worker = new T(params);

The addition of keywords to a language is not without cost: each keyword adds to
the cognitive load for programmers learning and using the language. This cognitive
load must be weighed against the alternative. In this case, the alternative is verbose
boilerplate code that obscures the important information about the variable: its type
and the operation used to initialize its local instances.

There is a symmetry in the relationship between workerLocal and async and
placeLocal and at. Code within an async activity must assume that it is working
a different instance of a workerLocal value, and furthermore it may assume that
no other activity will read or modify that instance for the duration of the activity.
Similarly, code within an at statement must assume that it is working on a different
instance of a placeLocal value to its enclosing scope (and of course it may assume
that code running at other places will not read or modify that instance). However,
unlike workerLocal data, placeLocal data are not thread safe. Other worker threads
at the place may access the placeLocal value, so possible concurrent accesses must
be protected by atomic blocks.

The proposed new keywords are under discussion with the X10 core design team
and have not been incorporated into the language.

3.1.2 Visualizing Task Locality In A Work Stealing Runtime

An optimal scheduler should place tasks on processing elements so as to maximize
reuse of cached data. For X10 this means that as far as possible, activities that are
‘nearby’ in the sense of sharing data should be executed by the same worker thread.
Divide-and-conquer style programs which share data between related subtasks tend
to exhibit good locality when run on work-stealing runtimes. However, work stealing
has been observed to exhibit poor locality for other applications, including iterative
data-parallel loops, due to random stealing [Acar et al., 2000]. It may therefore be
useful for the programmer to know the actual locality achieved by the work-stealing
runtime during program execution. To support the profiling and visualization of task
locality in X10, we propose a new annotation: @ProfileLocality.

§3.1 Task Parallelism 45

Applying the @ProfileLocality annotation to an async statement causes the run-
time to collect the following information for each activity that executes the statement:

• place ID;

• worker thread ID; and

• one or more locality variables specified by the programmer.

On termination of the program, the collected information for the full list of activities
is printed in tabular format to the standard output stream. The @ProfileLocality
annotation could be implemented by a simple compiler transformation, which would
have the advantage that instrumentation and logging could be controlled using a
compiler flag. For the purposes of evaluating the approach for this thesis, the trans-
formation was performed by hand.

The following example code demonstrates the use of this facility to visualize the
locality of activities in a one-dimensional domain decomposition. The code simply
computes the histogram of an array of integers, by processing each element of the
array in a separate activity.1

1 public static def compute(data:Rail[Int], numBins:Int) {
2 val bins = new Rail[Int](numBins);
3 for (i in 0..(data.size-1)) @ProfileLocality(i) async {
4 val b = data(i) % numBins;
5 atomic bins(b)++;
6 }
7 return bins;
8 }

The annotation on line 3 associates each activity generated by the loop with the
locality variable i, which is simply the loop index. On termination, the program
prints the locality variable i followed by the place ID and worker ID for each activity
as follows:

Histogram__closure__1
i place worker

0 0 1
1 0 3
2 0 2
3 0 4
4 0 2
5 0 2
6 0 2

...

The above output shows that the array element with index i = 0 was processed at
place 0 by worker thread 1; array element i = 1 was processed at place 0 by worker

1This code is included in the public X10 distribution as the Histogram sample code.

46 Improvements to the X10 Language to Support Scientific Applications

Figure 3.2: Locality of activity-worker mapping for Histogram benchmark (n=2000,
X10_NTHREADS=4).

Figure 3.3: Locality of activity-worker mapping for Histogram benchmark with divide-and-
conquer loop transformation (n=2000, X10_NTHREADS=4).

thread 3, and so on. These data can then be visualized using standard plotting
tools. For example, figure 3.2 shows the locality of activities generated by executing
Histogram for an array of 2000 elements on four worker threads at a single place. The
activities executed by each thread are represented by a unique color.

It is apparent from the diagram that both load balancing and locality are poor:
most activities are executed by one particular worker thread, and the remaining
activities are finely and randomly divided between the other three worker threads.

To see the value of such a visualization, contrast figure 3.2 with figure 3.3. In X10
version 2.3, the X10 compiler was enhanced to include an optional loop transformation
which converts a for loop over an integer index to a divide-and-conquer pattern of
activities, using recursive bisection. This significantly improves locality when using
work stealing with simple for loops. Figure 3.3 shows the locality of activities
generated by Histogram compiled using the divide-and-conquer loop transformation.
The activities are now more evenly divided between worker threads, and each worker
executes large contiguous chunks of the loop, meaning that its reads from the data
array have a unit stride, rather than being scattered across memory.

Chapters 4 and 5 will show how visualizing the locality of activity execution can
be used to inform parallel algorithm design for more complex scientific codes.

3.2 Active Messages

An active message combines data transfer and computation in a single message [von
Eicken et al., 1992]. Active messages are the core mechanism for point-to-point com-
munications in X10. The following sections describe performance improvements for
the implementation of active messages in X10, and a generalization of active messages
to collective communications between activities executing at different places.

In later chapters, these improvements will be demonstrated in the context of
two scientific applications. Firstly, chapter 4 will describe the use of finish/ateach
collective active messages to share work between places in a quantum chemistry
application. Secondly, chapter 5 will demonstrate the use of TreeCollectingFinish
to perform an energy summation over a group of places in a molecular dynamics
application. Both applications make use of improvements to the serialization of active

§3.2 Active Messages 47

messages described in the next section.

3.2.1 Serialization of Active Messages

As active messages are the primary communication mechanism in X10, their efficient
implementation is critical to performance. Certain messages, for example basic reads
or writes, may be simple enough that they can be mapped directly to hardware-
supported RDMA operations [Tardieu et al., 2014]. However, in general an active
message is implemented as a message to the target place, containing a closure identi-
fier and the environment for the closure. The X10 compiler generates a unique closure
for the body of each active message in the application. Each variable that is captured
in the closure environment for an active message is deep copied [Saraswat et al., 2014,
§13]. The variable is treated as the root of an object graph which is serialized into a
byte stream to be included in the message, and is deserialized at the target place to
create a copy of the object graph.

By default, the X10 compiler generates serialization and deserialization code for
every class in the application. Serialization proceeds recursively, with the serialize
() method for a class calling the serialize() method for each of its fields. The
programmer can specify that a field is not to be included in the copy by specifying
the field as transient. The programmer may also override the standard serialization
mechanism for a class by implementing the CustomSerialization interface:

1 package x10.io;
2 public interface CustomSerialization {
3 /** @return the value that should be serialized */
4 def serialize():SerialData;
5 }

By the mechanisms described above, X10’s serialization framework provides a
useful default, as well as the ability to override the default for performance fine-
tuning. Due to its general-purpose design, the original X10 serialization framework
entailed overheads which were unnecessary for many common applications and archi-
tectures, specifically, in byte-order swapping and preserving identity relationships in
copied object graphs. In §3.2.1.1 we describe the elimination of byte-order swapping
to improve the overall performance of serialization (both default and programmer-
specified) for typical architectures, and in §3.2.1.2 we propose a new annotation by
which a programmer may fine-tune serialization to avoid the cost of maintaining
object graphs.

3.2.1.1 Byte-Order Swapping

To ensure message compatibility between places of different architectures, X10 im-
plements byte-order swapping. The standard message format uses big-endian byte
order. When a place running on a little-endian architecture (e.g. x86) serializes data
to be sent to another place, it swaps the byte order to big-endian during serialization.
Similarly, when a little-endian place receives a message, it swaps the byte order to
little-endian during deserialization.

48 Improvements to the X10 Language to Support Scientific Applications

1 public class BenchmarkSerializeRail {
2 static N = 1000000;
3 static ITERS = 1000;
4
5 public static def main(args: Rail[String]): void = {
6 val a = new Rail[Double](N);
7 val start = System.nanoTime();
8 for (i in 1..ITERS) {
9 at(here.next()) { a(0) = 1; }

10 }
11 val stop = System.nanoTime();
12 Console.OUT.printf("send rail: %10.3g ms\n",
13 ((stop-start) as Double) / 1e6 / ITERS);
14 }
15 }

Figure 3.4: X10 benchmark code for serialization: send Rail of 1M elements

This byte swapping was found to be a major contributing factor to the cost of
communications. As a demonstration, the benchmark code in figure 3.4 measures
the average time to send a Rail of 1 million doubles to a neighboring place. When
executed on two single-threaded places, both running on the same Sandy Bridge Core
i7-2600 CPU, it takes an average of 8.78 ms to send the rail, of which almost 4 ms is
spent in byte swapping.

Byte swapping adds no value for systems where all places use the same byte
order. To avoid this cost, we modified the X10 runtime to avoid byte swapping
for homogeneous clusters. If the flag -HOMOGENEOUS is set during compilation of
the X10 runtime, the byte-order swapping code is replaced with a straightforward
memory copy. This reduces the time for the benchmark in figure 3.4 to from 8.78 ms
to 4.84 ms. The simple -HOMOGENEOUS build modification for the X10 runtime was
incorporated as the default for X10 version 2.3, and was used for all other performance
measurements of X10 code presented in this thesis.

A more general solution would perform byte swapping between places only when
necessary. For example, places could broadcast architectural information to all other
places, and then use this information to determine whether to swap byte order in se-
rialization. Alternatively, each message could include a flag (little/big-endian) which
could be used at the receiving place during deserialization. On deserialization, byte
order is swapped only if the message flags is different to the current architecture. This
would slightly increase message size, but would avoid the need for places to know
the architecture of other places and so may better support dynamic reconfiguration
and scaling to very large numbers of places.

§3.2 Active Messages 49

3.2.1.2 Object Graphs and Identity

Serialization aims to recreate a copy of the object graph at the receiving place with
the same identity relationships between objects. Preserving the identity relationships
is critical if the object graph contains cycles, or multiple pointers to the same object.
During serialization, the local address of each object is converted to a unique ID that
is used within the message in place of a pointer. Whenever the serializer encounters
an object address, it looks up the address in a map to determine whether the object
has already been serialized, and if so, the previously used ID is reused.

For many scientific applications, the data structures to be transferred are much
simpler: the object graph is a simple tree. It is wasteful to perform address mapping
for these structures; each reference may be treated as a unique instance and serialized
in full. To improve performance for simple tree structures, the @Tree annotation is
proposed. Any local variable or class field annotated @Tree would be flat-copied
for all at statements, treating each object address as unique within the subgraph of
which that field or variable is the root. Correct operation of this mechanism assumes:

• the object subgraph is acyclic; and

• each object is referenced only once.

As with other safety checks in X102, @Tree could be compiled in two modes. If an
object graph were serialized at runtime with checking enabled, object addresses would
be written to an address map as normal, and if a previously serialized address were
found within an @Tree subgraph, an exception would be thrown. Object identifiers
for the @Tree subgraph would not be included in the messages and therefore would
not be used in deserialization. If an object graph were serialized with checking
disabled, addresses within a @Tree subgraph would simply be ignored. This would
leave open the possibility of duplicate serialization of an object, or an infinite loop in
serialization; it would be the programmer’s responsibility to ensure the contract of
@Tree is fulfilled, to avoid such possibilities.

The @Tree proposal is under discussion with the X10 core design team and has
not been incorporated into a public release of X10.

3.2.2 Collective Active Messages Using finish/ateach

In MPI, data movement collective operations provide a means for communicating
related data between all processes in a group. Collective operations may take ad-
vantage of hardware support for efficient communications, for example: multicast
operations on Infiniband networks [Hoefler et al., 2007]; the global collective network
on Blue Gene/L and Blue Gene/P [Faraj et al., 2009]; and message unit collective
logic and barrier control registers on Blue Gene/Q [Chen et al., 2011]. In this section,
we propose that active messages should be extended to operate within groups of
processes, in an analogous way to MPI collective operations. To demonstrate the

2For example: array bounds checks and place checks (checks to ensure that references to distributed
data may only be dereferenced at the home place).

50 Improvements to the X10 Language to Support Scientific Applications

concept, broadcast and reduction active messages are implemented within the X10
compiler and runtime and evaluated using microbenchmarks.

Since its inception, X10 has included the ateach construct to support parallel iter-
ation over a distributed array. To date this has been considered to be syntactic sugar —
merely a convenient shorthand way of representing parallel iteration, which is trans-
lated by the compiler into a more verbose pattern of distributed activities [Saraswat
et al., 2014, §14.5]. This transformation is performed automatically by the compiler
as shown in figure 3.5; the code on lines 2–4 of figure 3.5(a) is transformed into the
code in figure 3.5(b).

1 val D:Dist;
2 ateach(place in D.places()) {
3 S(p);
4 }

(a) original code

1 for (place in D.places()) at(place) async {
2 for (p in D|here) async {
3 S(p);
4 }
5 }

(b) compiler-transformed code

Figure 3.5: X10 version 2.4 compiler transformation of ateach

The code in figure 3.5(b) creates a number of distributed asynchronous activities
which are not guaranteed to terminate before exit of the loop nest. To wait for
termination, the ateach construct is typically used within an enclosing finish. For
example, finish ateach(place in group)S executes the statement S at every place
in a group of places. The execution of the above code requires the following steps:

1. an active message for the closure S is sent to each place in the group;

2. each place P executes S;

3. once execution of S is complete at place P, P sends a finish notification to the
root place; and

4. the root place collects the finish notification and confirms that all activities in
the scope of the finish have terminated.

Once the root place detects termination for all activities within the finish, execution
of its enclosing activity continues.

We observe that the semantics of ateach do not require that an active message
from the root be sent directly to each other place in the group, nor is it necessary that

§3.2 Active Messages 51

1 static def runOrForwardAteach(level:Int, group:PlaceGroup, treeDepth
:Int, body:()=>void):void {

2 if (level < treeDepth) {
3 // keep forwarding until tree is spanned
4 val groupSize = pg.size();
5 // right child is here.id + 2**level
6 val rightChildIndex = leftTreeIndex + Math.pow2(level);
7 if (rightChildIndex < groupSize) {
8 val rightChild = group(rightChildIndex);
9 val closure = ()=> {

10 runOrForwardAteach(level+1, pg, treeDepth, body);
11 };
12 x10rtSendMessage(rightChild.id, closure, prof);
13 }
14 // left child is here
15 runOrForwardAteach(level+1, pg, treeDepth, body);
16 } else {
17 // then execute here
18 execute(new Activity(body, state));
19 }
20 }

Figure 3.6: Implementation of tree-based ateach in x10.lang.Runtime

the finish notification return directly to the root. This observation allows the use of a
tree pattern of communication to implement both ateach and finish.

3.2.2.1 A Tree-Based Implementation of finish/ateach

A tree-based pattern of active messages was used to implement ateach in the class
x10.lang.Runtime. Figure 3.6 shows a simplified version of the implementation. The
PlaceGroup is mapped to a binary tree of treedepth = dlog2(size(group))e levels,
where each place is a leaf node. Each node forwards the active message downwards
through the tree (lines 3–15) until it reaches the leaf nodes. The body of the message
is then executed at each place (line 18).

The same pattern of communications was used in reverse to implement a new
class, x10.lang.Finish.TreeFinish, which handles distributed termination detec-
tion of activities within a binary tree of places. A subclass, TreeCollectingFinish,
supports the collection and reduction of the results of all activities. In combination,
tree-based ateach and finish can be used to effect a broadcast-reduction pattern of
computation. However, as they are implemented using active messages they may
be integrated with other activities in progress at each place and are therefore more
flexible than MPI broadcast and reduction.

To evaluate tree-based finish/ateach, its performance is measured against that
of the default implementation of ateach on two compute clusters: Vayu and Watson
4P (both described in appendix A). Figure 3.7 shows the benchmark code used to

52 Improvements to the X10 Language to Support Scientific Applications

1 val a = DistArray.make[Short](Dist.makeUnique());
2 val dummy = 1S;
3 finish ateach([p] in a) { Team.WORLD.barrier(here.id); }
4 val start = System.nanoTime();
5 for (i in 1..ITERS) {
6 finish ateach([p] in a) {
7 a(p) = dummy;
8 }
9 }

10 val stop = System.nanoTime();

Figure 3.7: X10 benchmark code for finish/ateach

measure both implementations of finish/ateach. As a comparison, the scaling of
MPI_Bcast/MPI_Reduce is measured for messages of one byte. The basic MPI broad-
cast benchmark was copied from a benchmark suite distributed by Intel [Intel, 2013b],
however as the benchmark was modified, results from it should not be considered to
be results from that suite. The MPI_Bcast benchmark was modified to add a call to
MPI_Reduce directly after the broadcast call in each iteration. One X10 place or one
MPI process was run per socket of Vayu/ core of Watson 4P.

Although MPI_Bcast is not an active message and does not initiate computation,
it does transfer data from a root process to all processes in the group and so could
be considered the ‘ideal’ against which performance of ateach should be compared.
Similarly, MPI_Reduce collects data from a group of activities at a single root place,
and so it is the ideal against which to compare the pattern of termination messages
in a tree-based finish.

Figure 3.8 shows scaling of finish/ateach with the number of places on Vayu
and Watson 4P. The absolute performance is about twice as fast on Vayu compared
with Watson 4P; this is because serialization/deserialization of active messages is
faster on Vayu’s more powerful Intel cores than it is on Blue Gene/P. The observed
scaling of finish/ateach with the default implementation is O(N) on both plat-
forms, whereas the tree-based implementation scales as O(log N). The tree-based
implementation is better for more than 64 places. While the improvement from using
tree communication for finish/ateach is substantial, the performance of MPI_Bcast-
MPI_Reduce is much better than either implementation of finish/ateach — around
twenty times faster for large numbers of places. This suggests that further optimiza-
tion of the hand-written tree implementation is required to match the performance
of MPI_Bcast. However, the improvement in scaling from O(N) to O(log N) makes
it feasible to use this implementation of ateach to execute relatively long-running
activities at each place within a group.

§3.2 Active Messages 53

 0.001

 0.01

 0.1

 1

 10

 0 64 128 192 256

ti
m

e
 (

m
s
)

number of places

MPI
default

tree

(a) Vayu: one place/process per socket

 0.001

 0.01

 0.1

 1

 10

 0 64 128 192 256

ti
m

e
 (

m
s
)

number of places

MPI
default

tree

(b) Watson 4P: one place/process per core

Figure 3.8: Scaling with number of places of the ateach construct on Vayu and Watson 4P,
and comparison with MPI broadcast.

54 Improvements to the X10 Language to Support Scientific Applications

3.3 Distributed Arrays

A distributed array stores portions of the array data at each place, while allowing
global access to any element. Language support for distributed arrays is found in
almost all PGAS languages, with the exception of Titanium in which all distributed
data structures must be constructed using global pointers [Yelick et al., 2007b]. In X10,
the DistArray class maps each point in a Region to a place in the system [Charles
et al., 2005]. Each place holds a local portion of the array comprising those elements
that are mapped to that place. X10 distributed arrays are very general in scope: they
allow for arbitrary distributions (for example: block; block-cyclic; recursive bisec-
tion; fractal curve) and arbitrary regions (for example: dense or sparse; rectangular,
polyhedral or irregular).

The flexibility and expressiveness of X10 distributed arrays makes them attractive
from the point of view of productivity. For example, X10 allows programmers to de-
velop algorithms that apply to arrays of arbitrary dimension while avoiding complex
and error-prone indexing calculations [Joyner et al., 2008]; modifying the domain de-
composition for a given array can be as simple as dropping in a different distribution
class. However, there are significant challenges in implementing distributed arrays
to achieve acceptable performance. In the following sections, we consider efficient
methods for indexing distributed array data, and demonstrate how these methods
can be used to build a high-level algorithm for updating ghost regions in distributed
grid applications.

3.3.1 Indexing of Local Data

The generality of DistArray comes at a cost; it is implemented using standard object-
oriented techniques and therefore requires key operations on the array to be im-
plemented as virtual method calls. For example, the Dist.offset(Point) method
determines the offset in memory for a particular element, from the start of the local
storage for the current place. This is a virtual method as the calculation of the offset
will be different depending on the distribution; however, many applications require
only dense rectangular regions, and the cost of a virtual function call on every ele-
ment access would be prohibitive. For this reason, X10 version 2.4 added a set of
‘basic array’ classes in a flat class hierarchy in the package x10.array. The basic array
classes are final classes specialized to particular dimensions and distributions (e.g.
DistArray BlockBlock2 for a two-dimensional, dense, rectangular, zero-based, 2D-
block-distributed array). This design avoids virtual function calls for array operations
and minimizes space overheads [Grove et al., 2014].

Despite the obvious utility of the x10.array classes, some applications will still
require the full generality of x10.regionarray.DistArray. To support these applica-
tions, we enhanced DistArray by adding a new method getLocalPortion(). This
returns the local portion at the current place as an Array; if the local portion is not
rectangular, it throws an exception. As Array is a final class, the local portion can be
operated on without the overhead of virtual method calls.

§3.3 Distributed Arrays 55

In a similar vein, it is sometimes necessary to transfer a single message composed
of multiple non-contiguous elements of a distributed array. For example, in a dis-
tributed linear algebra operation, a place may need to get a sub-block of a matrix from
another place. The sub-block can be transferred as a standard X10 array, however,
to fill the array it is necessary in general to copy the individual elements from the
DistArray. Again in this case it is undesirable to incur the overhead of a virtual
method call for each element access. To support efficient access to subregions of an ar-
ray, we implemented a new method DistArray.getPatch(). This method efficiently
copies a given region of the DistArray into a new Array object, inlining the offset
calculation so as to avoid calling the virtual offset(Point) for each element.

The approach outlined above supports efficient indexing of local data for rectangu-
lar, block-distributed arrays, which are the most commonly used style of distributed
array for scientific applications. However, a more general approach would be required
for efficient indexing of arrays of arbitrary regions and distributions.

The getLocalPortion() method was incorporated into the array library in X10
version 2.2.1. Chapter 5 shows how DistArray.getLocalPortion() can be used in
a particle mesh code for efficient iteration over the local portion of the mesh at each
place.

DistArray.getPatch() was incorporated into the array library in X10 version
2.5.1. Our initial implementation requires hard-coding a separate version of the
getPatch() method for each targeted number of array dimensions (1, 2, 3, ...), how-
ever it would be preferable to use automatic inlining and scalar replacement transfor-
mations [Fink et al., 2000] to generate efficient code for any dimension from generic
X10 code [Milthorpe and Rendell, 2012].

3.3.2 Ghost Region Updates

Many physical problems can be modeled in terms of a system of partial differential
equations over some domain. Discretizing the domain using a grid, and solving these
equations for each grid point, involves computation over a large number of elements.
Computation on each grid element requires only those elements in the immediate
neighborhood as shown in figure 3.9(a); this locality property may be exploited in
distributed algorithms.

A common feature of many distributed grid codes is the use of ghost regions. A
ghost region holds read-only copies of remotely-held data, which are cached to enable
local computation on boundary elements (as shown in figure 3.9(b)). Grid applica-
tions are typically iterative, so processes coordinate to exchange and cache ghost data
many times over the course of a computation. The efficient implementation of ghost
region updates is therefore an important factor in achieving good performance and
scalability. For productive application development, it is important that ghost region
updates be implemented using the standard distributed data structures available to
the programmer, rather than being custom-built for each new application. Chap-
ter 5 will show how an efficient ghost update algorithm can be used for productive
programming and high performance in a distributed particle mesh application.

56 Improvements to the X10 Language to Support Scientific Applications

(a) Solving for a grid element re-
quires only neighboring elements

Place 0 Place 1

 Ghost regions
(b) Ghost regions (cached copies of boundary ele-
ments) are exchanged between places

Figure 3.9: Solution of a system of partial differential equations on a grid

3.3.2.1 Implementing Ghost Region Updates for X10 Distributed Arrays

Support for ghost regions was implemented in the package x10.regionarray as a
number of new classes, as well as modifications to the existing DistArray class. A
new method on the Region class, getHalo(haloWidth:Int), returns a halo region
comprising the neighborhood of the target region. For rectangular regions, the halo
region is simply a larger rectangular region enclosing the target region. For the
special case of a zero-width ghost region (no ghosts), Region.getHalo(0) returns the
region itself.

The constructor for DistArray was changed to allocate storage for the ghost
region in LocalState. A new field, LocalState.ghostManager:GhostManager, holds
a distribution-specific object that manages ghost updates. This reduces to standard
behavior for DistArray in the special case of ghostWidth==0 as there is no ghost
manager and the ghost region is identical to the resident region. All operations on
DistArray were changed to use the ghost region rather than the resident region for
indexing.

The implementation of the GhostManager interface is specific to the distribution
type. It may also use different algorithms depending on the target architecture. The
initial implementation is for rectangular, block-distributed arrays only. For these
arrays, ghost region data are collected for sending to each place using the getPatch
method described in §3.3.1.

The following methods are defined on DistArray and constitute the user API for
the ghost region implementation:

• sendGhostsLocal()

an operation called at each place in the distribution that sends boundary data
from this place to the ghost regions stored at neighboring places

• waitForGhostsLocal()

§3.3 Distributed Arrays 57

an operation called at each place in the distribution that waits for ghost data at
this place to be received from all neighboring places

• updateGhosts()

an operation that is called at a single place to update ghost regions for the entire
array; this starts an activity at each place in the distribution to send and wait
for ghosts

Low-Synchronization Algorithm for Ghost Updates

Ghost region updates are typically used in the context of a phased computation, for
example:

1 for (i in 1..ITERS) {
2 updateGhosts();
3 computeOnLocalAndGhostData();
4 }

It is necessary to synchronize between neighboring places in a computation to
ensure that all ghost regions have been fully received at a place before computation
begins at that place.

There are two basic approaches to this problem. One is to use two-sided (send/re-
ceive or scatter/gather) communications. This is the approach used in the PETSc
library [Balay et al., 2011], and in the M_P (message-passing) algorithm described by
Palmer and Nieplocha [2002].

An alternative is to use one-sided communications surrounded by explicit syn-
chronization. In some computations, such synchronization may naturally be included
in the computation, for example to calculate a minimum or maximum value across all
grid points. In the following example, collective synchronization occurs each iteration
before the ghost data are sent and again before they are used in computation:

1 for (i in 1..ITERS) {
2 // collective synchronization
3 sendGhosts();
4 computeOnLocalData();
5 // collective synchronization
6 computeOnGhostData();
7 }

The collective operations surrounding the ghost update ensure the consistency
of ghost data by enforcing an ordering with regard to other messages. All previ-
ous send operations from a place must complete before the collective reduction can
begin. Where such natural synchronization is not present, the ghost update op-
eration must perform synchronization before and after sending ghosts. In Global
Arrays [Nieplocha et al., 2006a] this synchronization is done with a global collective
operation.

Our approach combines non-blocking one-sided messages with local synchroniza-
tion as suggested by Kjolstad and Snir [2010]. A phase counter is assigned to each

58 Improvements to the X10 Language to Support Scientific Applications

ghosted DistArray. The use of a unique phase counter per array allows ghost up-
dates on different arrays to proceed independently. This can be of use, for example,
in a multigrid or adaptive mesh refinement algorithm in which different timesteps
are used for coarser or finer grids. In each even-numbered phase the program com-
putes on ghost data; in each odd-numbered phase ghost data are exchanged with
neighboring places. A place may not advance more than one phase ahead of any
neighboring place. A call to sendGhostsLocal() increments the phase for this place
and then sends active messages to update ghost data at neighboring places. Each
active message also sets a flag to notify the receiving place that data have arrived
from a particular neighbor. The receiving place calls waitForGhostsLocal() to check
that flags have been set for all neighbors before proceeding with the next computation
phase.

Split-Phase Ghost Updates

The use of local synchronization allows phases to proceed with computation before
neighboring places have received their ghost data; it also allows communication of
ghost data to overlap with computation on local data at each place, as follows:

1 // at each place
2 for (i in 1..ITERS) {
3 sendGhostsLocal();
4 computeOnLocalData();
5 waitForGhostsLocal();
6 computeOnGhostData();
7 }

This approach is similar to the split-phase barrier in UPC, discussed in chapter 2.

Use of Active Messages

In the implementation of ghost updates, active messages are used to transfer and
perform local layout of ghost data, and to ensure consistency of data for each phase
of computation. In sendGhostsLocal(), each place sends messages to neighboring
places. A conditional statement (when) ensures that the ghost data are not updated
until the receiving place has entered the appropriate phase. After ghost data have
been updated, a flag is set within an atomic block to indicate that the data have been
received:

1 at(neighbor) async {
2 val mgr = localHandle().ghostManager;
3 when (mgr.currentPhase() == phase);
4 for (p in overlap) {
5 ghostData(p) = neighborData(p);
6 }
7 atomic
8 mgr.setNeighborReceived(sourcePlace);
9 }

§3.4 Summary 59

In waitForGhostsLocal(), another conditional atomic block is used to wait until
ghost data have been received from all neighboring places:

1 public def waitForGhostsLocal() {
2 when (allNeighborsReceived()) {
3 currentPhase++;
4 resetNeighborsReceived();
5 }
6 }

Support for ghost region updates in block-distributed arrays was added to x10.
regionarray.DistArray in X10 version 2.5.2. Ghost region support will be added to
the basic distributed array classes in the x10.array package in future versions of X10.
Further enhancements are possible, for example, support for irregular distributions,
and ghost regions with different (or zero) extent in different dimensions.

3.3.2.2 Evaluation of Ghost Updates

We performed a microbenchmark on Vayu to compare the scaling of the local synchro-
nization implementation of ghost region updates with an alternative algorithm using
a global barrier. This benchmark performs 10,000 ghost updates for a seven-point
stencil over a large distributed three-dimensional array. The array size for one place
is 1003, and the array size is increased with the number of places (weak scaling), so
that each place always holds one million double-precision values. Figure 3.10 shows
the scaling measured for each update algorithm, which demonstrates the benefit of
using only local synchronization as compared to a global barrier.

For 2–8 places, the difference between local and global synchronization is insignif-
icant, as all communications (including the global barrier) take place within a single
node. For more than eight places, the update time with a global barrier increases
more rapidly than the time with only local synchronization. This is expected as the
collective operation on which it is implemented scales as O(log p) where p is the
number of places, whereas other elements of the ghost update scale as O(1). These
results show that the cost of updating ghost regions can be reduced by using local
synchronization, rather than global synchronization.

3.4 Summary

This chapter proposed new features for the X10 programming language to support
scientific application programming, and considered their efficient implementation on
modern computer architectures. The co-design process followed in this work gener-
ated a number of insights regarding the language design that resulted in changes to
improve performance and programmability for task parallelism, active messages and
distributed arrays. The value of these changes will be demonstrated in the context of
complete scientific application codes in chapters 4 and 5.

60 Improvements to the X10 Language to Support Scientific Applications

 0

 1

 2

 3

 4

 5

 6

 1 4 16 64 256 1024

ti
m

e
 p

e
r

u
p
d
a
te

 (
m

s
)

number of places

global barrier
local synchronization

Figure 3.10: Ghost region update weak scaling on Vayu: global barrier vs. local synchroniza-
tion (1M elements per place, 8 places per node).

Chapter 4

Electronic Structure Calculations
Using X10

This chapter describes the application of the APGAS programming model to a
quantum chemistry problem: the calculation of Hartree–Fock energy using the self-
consistent field method (SCF). We implemented SCF using the resolution of the
Coulomb operator (RO) approach previously described in chapter 2, entirely in the
X10 programming language, exploiting both distributed parallelism between places
and multithreaded parallelism within each place. During implementation, we consid-
ered the following questions:

• How can the novel RO method be structured to exploit parallelism?

• How does X10’s work stealing runtime affect load balancing and data locality
in the computation of auxiliary integrals (the key intermediate representation
in RO)?

• How should the key data structures be distributed between X10 places?

• How do choices about data distribution affect load balancing between places?

• What benefits can be achieved through the use of optimized implementations
of dense linear algebra operations?

Several of the improvements to the X10 programming language that were pro-
posed in chapter 3 are demonstrated in the context of this application. The visualiza-
tion of task locality in multithreaded execution is used to evaluate different schemes
for generating activities within a place. Issues of data distribution are explored
with regard to the distributed array data structure. The collective active messages
finish / ateach are used to create and coordinate parallel activities across a large
number of places. The PlaceLocalHandle and WorkerLocalHandle structures are
used to support data replication and combining partial contributions to key matrices.
The contributions of these improvements and the performance of the application are
evaluated on representative parallel computing architectures.

61

62 Electronic Structure Calculations Using X10

Portions of this chapter have been previously published in Milthorpe et al. [2011],
Limpanuparb et al. [2013] and Limpanuparb et al. [2014]. All source code included
in this chapter as well as the benchmarks used in evaluation are distributed as part
of the ANUChem suite of computational chemistry applications in X10 [ANUChem].

4.1 Implementation

Pumja Rasaayani (Sanskrit for quantum chemistry) is a complete Hartree–Fock imple-
mentation in the X10 programming language, developed by the present author in
collaboration with Ganesh Venkateshwara and Taweetham Limpanuparb. The im-
plementation is unique in that it uses the linear-scaling resolution of the Coulomb
operator (RO) described in chapter 2 to reduce the computational complexity of
Fock matrix construction. However, the challenges for parallelization are similar to
standard SCF calculations where RO is not used.

As discussed in chapter 2, the resolution of the Coulomb and exchange operators
for a set of N basis functions requires the computation of auxiliary integrals (µν|nlm)
for shell pairs µ, ν where n ∈ {0 . . .N ′} is the radial component and l ∈ {0 . . .L}, m ∈
{−l . . . l} are the angular components of the resolution. Constructing the Fock matrix
requires a total of N2N ′(L+ 1)2 auxiliary integrals; however, as the contributions
for the different radial components of the resolution are independent, the integrals
may be computed and their contributions to the Coulomb matrix J and the exchange
matrix K accumulated in a loop over n, thereby reducing the storage required for
integrals by a factor of 1/(N ′ + 1). Dividing by n (rather than by angular component
l, m) allows the use of recurrence relations to efficiently compute the resolution for
higher angular momenta [Limpanuparb et al., 2012].

1 For n = 0...N ′

2 Aµ,νlm ← (µν|nlm) Eq. (2.20)
3 // Coulomb matrix

4 Dlm ← Pµν × Aµν,lm Eq. (2.22)
5 Jµν += Dlm × Aµν,lm Eq. (2.21)
6 // Exchange matrix

7 Bνlm,a ← Aµ,νlm × Cµ,a Eq. (2.24)
8 Kµν += Bµ,lma × Bν,lma Eq. (2.23)
9 Next n

Figure 4.1: Pseudocode for construction of Coulomb and exchange matrices using resolution
of the operator (from Limpanuparb et al. [2013])

In a previous paper, we presented a sequential implementation of RO as shown in
the pseudocode in figure 4.1 [Limpanuparb et al., 2013]. For parallel implementation,
it may be noted that while the elements of both the J matrix (lines 4–5) and the
K matrix (lines 7–8) depend on the auxiliary integrals (line 2), J and K may be

§4.1 Implementation 63

computed independently of each other. Each Jµν depends on all values of Dlm (a
reduction dependency), which in turn depends on the auxiliary integrals A and
the density matrix P. Each Kµν depends on two blocks of Bνlm,a, which in turn
depends on the auxiliary integrals A and the molecular orbital coefficients matrix
C. The most expensive operations are those to produce the exchange matrix at
lines 7 and 8, costing O(ON2K) operations, but these can be formulated as matrix
multiplications and efficiently computed using optimised (double-precision general
matrix multiply (DGEMM)) library calls. The memory requirements for matrices A
and B are O(N2(L+ 1)2) and O(ON(L+ 1)2) respectively. It was shown that the
computational cost of Hartree–Fock J and K matrix calculation using high quality
basis sets can be significantly reduced by using the resolution. RO algorithm scales
only quadratically with respect to basis set size (for a fixed molecule) and works
best for compact globular molecules [Limpanuparb et al., 2013], for which traditional
cut-off strategies [Häser and Ahlrichs, 1989] are ineffective.

In figure 4.1, the auxiliary integrals are calculated and stored in a dense matrix
Aµ,νlm (line 2). In comparison to the previous paper, we insert an additional step 2a
which stores a copy of the integrals in sparse format as a ragged array Aµν,lm, with
as much storage as required for the maximum angular momentum of each shell pair.
This dual storage approach allows the contribution of an entire shell to matrix B
(line 7) to be computed using an efficient DGEMM operation, while the contraction
of integrals with the density matrix (line 4) reads integral values with unit stride in
memory.

The actual computation of the integrals is done by a native call to an optimized
C++ function, which calculates a complete class of integrals (µν|nlm) for a given shell
pair A, B. This function has the following signature:

1 void Genclass(
2 // angular momenta
3 int angA, int angB,
4 // coordinates of centers
5 const double *A, const double *B,
6 // orbital exponents
7 const double *zetaA, const double *zetaB,
8 // contraction coefficients
9 const double *conA, const double *conB,

10 // degrees of contraction
11 int dconA, int dconB,
12 // radial component of resolution
13 int n,
14 // spherical harmonics for given n
15 double *Ylm,
16 // [out] auxiliary integrals
17 double *aux
18);

After return of a call to GenClass, the array aux contains the indexed set of integrals
Aµνlm for the given n.

64 Electronic Structure Calculations Using X10

4.1.1 Parallelizing the Resolution of the Operator

The computations of the auxiliary integrals and their contributions to the J and K
matrices permit multiple levels of parallelism. The most natural levels at which to
divide the computation are by shell (a block of µ) or shell pair (a block of µν), and
radial component n.

When decomposing by shell, the J and K matrix contributions for each block
of µ depend on the full sets Dlm and Bνlma, which must therefore also be reduced
across all places involved in computing integrals for a given n. The auxiliary integrals
Aµ,νlm and intermediate matrix Bµ,lma may be divided between places, to allow larger
problems to be treated by using the available memory on multiple cluster nodes.
Parallelism within a place is also readily exposed by dividing by shell; as each
shell contributes to a unique block of both J and K matrices, threads may proceed
independently without the need for mutual exclusion. Integral calculation may be
further divided by shell pair (a block of µν) to increase the available parallelism;
however, this means that each activity at line 7 in figure 4.1 contributes to a very
small block of B — possibly as small as one element. The coarser division by shell
allows the computation of a larger block of B to be performed by a call to an efficient
BLAS DGEMM operation, which is the approach used in this implementation.

When decomposing by the radial component, each value of n requires all spher-
ical harmonics Yµν

lm (2.19), so distributing different values of n to different processes
requires that the full set of Yµν

lm must be either replicated or recomputed at each place.
As the full matrices Aµνlm, Bνlma are required for each value of n, there is no reduction
in the memory requirement per node, and therefore dividing by radial component
does not by itself permit the treatment of a larger problem than would fit in the
memory of a single cluster node. Distribution of n, however, may offer time saving
when the SCF requires many cycles and auxiliary integrals are not recalculated after
the first cycle. The current implementation uses only shell decomposition for place
parallelism.

The time required to compute auxiliary integrals depends on the angular mo-
menta of the basis functions, and may differ widely between shells. Figure 4.2 shows
the time to compute auxiliary integrals for the different shells of a cluster of 10 water
molecules using the cc-pVQZ basis set. The time required to compute a single shell
varies from 11 ms to more than 70 ms. This presents a load balancing problem as it is
necessary to divide the set of integrals into evenly sized portions for computation by
different processing elements. A static load balancing approach - carefully mapping
integrals to processing elements so that each processing element performs roughly
the same amount of computational work - has been successfully used for integral
evaluation on GPUs [Ufimtsev and Martínez, 2008]. Even so, static schemes cannot
account for unpredictable changes in the compute capacity of different cores that may
arise when, for example, the frequency of a core is automatically reduced in response
to local environmental factors. Alternatively, load may be balanced dynamically by
ordering integral calculations in a centralized task queue [Asadchev and Gordon,
2012]; such an approach has previously been considered for use with X10 [Shet et al.,

§4.1 Implementation 65

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300 350

ti
m

e
 (

m
s
)

shell index

Figure 4.2: Variation in time to compute auxiliary integrals for different shells on Raijin
([H2O]10, cc-pVQZ, N ′ = 9,L = 16)

2008; Milthorpe et al., 2011]. X10 provides a partial solution to this problem by allow-
ing worker threads within a place to dynamically balance load using work stealing,
without the need for a centralized task queue.

In §4.1.2 we explore an alternative solution which makes use of X10’s work stealing
runtime for dynamic load balancing within a place, without the need for a centralized
task queue. In §4.1.3 we describe the distribution of key data structures needed for
multi-place computation. Finally, in §4.1.4 we consider the load imbalance between
places due to the choice of data distribution.

4.1.2 Auxiliary Integral Calculation with a Work Stealing Runtime

Although work stealing can be an effective way of load balancing parallel activities
between worker threads, it also raises three potential problems: i) how to avoid
synchronization so as to allow activities to compute independently; ii) the overhead
of creating and stealing activities; and iii) the impact of stealing patterns on data
locality. The following subsections consider each problem in the context of auxiliary
integral calculation.

4.1.2.1 Use of Worker-Local Data to Avoid Synchronization

The WorkerLocalHandle class described in chapter 3 allows parallel activities to com-
pute contributions to the J and K matrices independently of other activities. Figure 4.3

66 Electronic Structure Calculations Using X10

shows the use of a WorkerLocalHandle to allocate memory for a separate set of aux-
iliary integrals for each worker thread. The parallel loop on line 5 starts a separate

1 val aux_wlh = new WorkerLocalHandle[Rail[Double]](
2 ()=> new Rail[Double](maxam1*N*roK));
3 val dlm_wlh = new WorkerLocalHandle[Rail[Double]](
4 ()=> new Rail[Double](roK));
5 finish for (shell in shells) async {
6 val aux = aux_wlh();
7 val dlm = dlm_wlh();
8 for (shellPair in shell.pairs) {
9 Genclass(shellPair, ..., aux);

10 for ([mu,nu] in shell.basisFunctions) {
11 for (l in 0..roL) {
12 for (m in -l..l) {
13 dlm(l,m) += density(mu,nu) * aux(mu,nu,l,m);
14 }
15 }
16 }
17 }
18 DGEMM(mos, aux, b); // Single-threaded
19 }
20 dlm_wlh.reduceLocal(dlm_complete, ...);

Figure 4.3: X10 code to compute auxiliary integrals, Dlm and B using WorkerLocalHandle

activity (async) for each shell, and waits for all activities to terminate (finish); the
activities are scheduled for execution on the available worker threads. The worker
threads also use a WorkerLocalHandle to store partial contributions to Dlm, which
are summed together after the computation of all auxiliary integrals for a given n.
Thus each iteration of the parallel loop in figure 4.3 is independent and synchroniza-
tion is only required in the reduction of Dlm on the final line. The improvements to
WorkerLocalHandle described in § 3.1.1 ensure that the minimum number of local
copies are required, and provide a simple and correct reduction over all worker-local
data.

4.1.2.2 Overhead of Activity Management

For efficient scheduling, work stealing relies on over-decomposition — a division of
work into significantly more activities than there are units of hardware parallelism. It
is possible that the cost of creating many activities and scheduling them for execution
by worker threads could outweigh the benefit gained by balancing load. To evaluate
the costs and benefits for this application requires examination of the pattern of
activity creation and stealing exhibited at runtime.

For the basic parallel loop shown in figure 4.3 (line 5), the worker thread that
executes the enclosing finish statement (the master thread) creates a separate activity
for each iteration of the loop. When an activity is created, if any threads are currently

§4.1 Implementation 67

idle then the activity is dealt to one of the idle threads. Otherwise the activity is
placed on the deque of the worker thread that created it. The majority of activities
are therefore placed on the deque of a single thread, to be stolen by other threads. In
other words, the steal ratio — the proportion of activities that are stolen rather than
executed by the worker which created them — is high.

To evaluate the benefit of work stealing in this application, we compare it with
the static load balancing approach, in which a single activity is created per thread.
Figure 4.4 shows code for such a static load balancing approach using a cyclic decom-
position of shells.

1 finish for (th in 0..(Runtime.NTHREADS-1)) async {
2 for (shellIdx = th; shellIdx < shells.size; shellIdx += maxTh) {
3 Genclass(...);
4 }
5 }

Figure 4.4: Parallel loop to compute auxiliary integrals: single activity per thread with cyclic
decomposition

Using a single long-running activity per worker thread eliminates the overhead
of activity management, however, there may be a load imbalance between worker
threads due to the differing times to compute shell pairs as shown in figure 4.2.

4.1.2.3 Optimizing Auxiliary Integral Calculations for Locality

For large problem sizes it is not possible to store all auxiliary integrals in cache.
For example, for a cluster of 5 water molecules using the cc-pVQZ basis set where
N = 700,L = 13, there are 7002 × (13 + 1)2 ≈ 96 M auxiliary integrals requiring
733 MiB, which is around two orders of magnitude larger than a typical last-level
cache. To achieve performance it is necessary to make efficient use of cache.

The most natural order in which to store the auxiliary integrals (using either
sparse or dense matrix representation) is by shell pair µ, ν. Thus there is a relationship
between shellIdx and the memory locations to which the corresponding auxiliary
integrals must be written. Using the basic parallel loop shown in figure 4.3, the
order of stealing is effectively random, which means that there is no relationship
between the loop index shellIdx for an activity and the worker thread which executes
it. In comparison, the cyclic decomposition in figure 4.4 means that each thread’s
accesses are roughly evenly distributed throughout memory, in small contiguous
blocks separated by irregular stride.

A single activity per worker thread may also use a block decomposition, as shown
in figure 4.5. This divides the shell pairs into contiguous blocks of approximately
equal size. The block decomposition has the additional advantage of locality: each
worker thread writes to a compact portion of the auxiliary integral matrix Aµ,νlm,
whereas with the cyclic decomposition each thread writes to widely separated por-
tions of the matrix.

68 Electronic Structure Calculations Using X10

1 val chunk = shells.size / Runtime.NTHREADS;
2 val remainder = shells.size % Runtime.NTHREADS;
3 finish for (th in 0..(Runtime.NTHREADS-1)) async {
4 val start = th < remainder ? ((chunk+1) * th)
5 : (remainder + chunk*th);
6 val end = (th < remainder ? ((chunk+1) * (th+1))
7 : (remainder + chunk*(th+1))) - 1;
8 for (shellIdx in start..end) {
9 Genclass(...);

10 }
11 }

Figure 4.5: Parallel loop to compute auxiliary integrals: single activity per thread with block
decomposition

The basic parallel loop entails a high steal rate and therefore stealing overhead,
whereas the static load balancing approaches may lead to load imbalance. Ideally,
we would prefer a loop decomposition that provides load balancing with a low
steal rate, while also maintaining good locality between the tasks processed by each
worker thread. The divide-and-conquer loop transformation introduced in chapter 3
promises such a combination. In this approach, the loop is recursively bisected
into approximately equal ranges, with each range constituting an activity. Bisection
continues until a certain minimum grain size is reached. Figure 4.6 shows example
code for this transformation applied to the loop over shell pairs.

With the recursive bisection loop transformation, if a worker thread’s deque con-
tains any activities, then the activity at the bottom of the deque will represent at least
half of the loop range held by that worker. Thus idle workers tend to steal large
contiguous chunks of the loop range, preserving locality. A further advantage is
that activities are executed in order of shell index, rather than in reverse order as for
the basic parallel loop. The bisection approach is not without cost: for a loop of N
iterations, an additional log2(N/grainSize) activities are created to divide the work.

4.1.3 Distributed and Replicated Data Structures

When implementing the SCF for execution on a distributed architecture, an important
question is how to distribute the key matrices. Certain matrices such as the density
matrix and molecular orbital coefficients must be accessible to all places, as their
elements are used in the calculation of widely separated elements of the Fock matrix.
If the size of the system is small enough, it is possible to replicate these matrices so
that a copy is held at every place. In X10, this may be done using a PlaceLocalHandle
(see §3.1.1).

Figure 4.7 shows the high-level structure of the X10 code to compute the Fock
matrix using RO. The density and molecular orbital matrices are updated each it-
eration at Place 0, after which they are replicated to all other places (line 4) using
the broadcast active message that was described in chapter 3. For large problems,

§4.1 Implementation 69

1 struct RecursiveBisection1D(start:Long, end:Long, grainSize:Long){
2 public def this(start:Long, end:Long, grainSize:Long) {
3 property(start, end, grainSize);
4 }
5
6 public def execute(body:(idx:Long)=> void) {
7 if ((end-start) > grainSize) {
8 val secondHalf =
9 RecursiveBisection1D((start+end)/2L, end, grainSize);

10 async secondHalf.execute(body);
11 val firstHalf =
12 RecursiveBisection1D(start, (start+end)/2L, grainSize);
13 firstHalf.execute(body);
14 } else {
15 for (i in start..(end-1)) {
16 body(i);
17 }
18 }
19 }
20 }
21
22 finish RecursiveBisection1D(0, shells.size, grainSize).execute(
23 (shellIdx:Long)=> {
24 ... // Line 6--18 in Figure 3
25 }
26);

Figure 4.6: Parallel loop to compute auxiliary integrals: recursive bisection transformation

70 Electronic Structure Calculations Using X10

1 public class ROFockMethod {
2 ...
3 public def compute(density:Density, mos:MolecularOrbitals) {
4 finish ateach(place in PlaceGroup.WORLD) {
5 for (ron in 0n..roN) {
6 computeAuxBDlm(density, mos, ron,
7 /*output*/ auxJ, bMat, dlm);
8 computeK(ron, bMat,
9 /*output*/ localK);

10 computeJ(ron, auxJ, dlm,
11 /*output*/ localJ);
12 Team.WORLD.barrier();
13 }
14 // gather J, K to place 0
15 }
16 }
17 ...
18 }

Figure 4.7: High level structure of X10 code to compute Fock matrix, showing broadcast of
density and molecular orbital matrices using finish/ateach

computing these matrices (density and MO) entirely at Place 0 may present an un-
desirable sequential bottleneck; however for the problems considered in this chapter
the cost of this step is small relative to other parts of the computation.

Other matrices are too large to replicate in this way, and must be distributed be-
tween places; care must be taken to distribute them so as to minimize data movement
between stages of the computation. As previously mentioned, for large molecules it
is not possible to replicate the auxiliary integrals Aµν,lm. The auxiliary integral matrix
is therefore divided between places into blocks according to shell index µ.

4.1.4 Load Balancing Between Places

The computational cost attributable to a given shell is estimated as being proportional
to the total angular momentum of all associated shell pairs; shells are divided so that
total angular momentum is approximately even between places. If possible, integrals
for an entire shell are computed at a single place. Where assigning a whole shell to
one place would lead to a load imbalance, the basis functions associated with the
shell are divided between two or more places. The J matrix is distributed in the same
way, so that contributions to J at each place may be calculated entirely from integrals
held at that place.

Given the data distribution scheme described above, there are two different mea-
surements of computational cost at each place. The first is the Fock matrix cost
costFock, which depends on the size of the portion of the J and K matrices and there-
fore the Fock matrix that are computed at each place; this is determined simply by

§4.1 Implementation 71

the number of shells Mp assigned to place p:

costFock(p) = (Mp)
3. (4.1)

The second measurement is the auxiliary integral cost costaux, which is the total
angular momentum of all shell pairs for which auxiliary integrals are computed at
place p:

costaux(p) =
Mp

∑
µ=1

∑
ν

ang(µ, ν). (4.2)

From these costs, two different measurements of load imbalance can be calculated:
the Fock matrix load imbalance

LFock = (max
p

costFock(p))/(
P−1

∑
p=0

(costFock(p))/P), (4.3)

and the auxiliary integral load imbalance

Laux = (max
p

costaux(p))/(
P−1

∑
p=0

(costaux(p))/P). (4.4)

Assuming a perfectly parallel code with no sequential sections or parallel overhead,
the load imbalance is the inverse of parallel efficiency. For example, an imbalance of
4 would mean a parallel efficiency of 25% and an imbalance of 1 would mean perfect
parallel efficiency.

4.1.5 Dense Linear Algebra Using the X10 Global Matrix Library

The computation of K matrix contributions from auxiliary integrals can be cast in the
form of dense linear algebra operations, which enables the use of a highly-optimized
BLAS implementation. The contraction of auxiliary integrals with molecular orbitals
(step 7 in figure 4.1) for a given n is performed using a call to DGEMM, which uses a
single thread to allow multiple such calls in parallel for different shells, each of which
creates a unique block of the matrix Bνlma. Once B has been computed in full, the
contribution to matrix K (step 8 in figure 4.1) may be computed using a symmetric
rank-K update. For a single place, all of B is held locally, which allows the use of the
BLAS double-precision symmetric rank-K update (DSYRK) operation. For multiple
places, B is divided into blocks of rows, meaning that a distributed rank-K update is
required.

Matrices B and K (as well as J) are represented using the DistDenseMatrix class
from the X10 Global Matrix Library (GML). In a DistDenseMatrix, the matrix is block-
distributed between places; each place maintains its own local block as a DenseMatrix,
and also holds a Grid which defines the extent of the local block held at each place in
the distribution. For our purposes, matrix B is divided into blocks of rows according
to the values of µ for which that place has computed auxiliary integrals. The block

72 Electronic Structure Calculations Using X10

of B held by each place must include a square of size approximately N/p on the
diagonal. From this local square block, the corresponding upper-left triangle block
of K can be computed using DSYRK. The remaining off-diagonal blocks of K are
computed at each place using DGEMM on a combination of local and non-local data.

Figure 4.8 shows the pattern of distributed computation of blocks of the K matrix
for 1–4 places. For odd numbers of places, all DGEMM operations compute square
blocks of K. For even numbers of places, to ensure load balance the last block in each
row is divided between pairs of places, therefore the final DGEMM for each place
computes a rectangular block of K.

DSYRK

1 place 2 places

DSYRK

DSYRK

DGEMM

DGEMM

3 places 4 places

Place 1

Place 0

Place 1

Place 0

Place 2

Place 0

Place 1

Place 2

Place 3

Figure 4.8: RO contributions to K matrix: block pattern of distributed computation for
different numbers of places

After each place has computed its partial contributions to J and K, these matrices
are gathered to Place 0 for further processing - for example, to compute long-range
Coulomb and Exchange energies, or to compute new molecular orbital coefficients
and density matrices in a full SCF calculation. The transfer of each partial contribution
is performed using the Rail.asyncCopy method which asynchronously transfers
array data to a remote place. While this method is efficient for small numbers of

§4.2 Evaluation 73

places, it is not expected to scale to larger numbers of places. A more scalable
solution would be a tree-based collective communication similar to MPI_Gatherv;
efforts are currently underway to provide such functionality in the X10 Team API.

An alternative solution would be not to gather the J and K matrices at all, but
to leave them distributed between places. The various matrix operations required
for energy or SCF calculations would therefore be implemented as distributed linear
algebra operations.

4.2 Evaluation

To evaluate the X10 implementation of SCF using resolution of the Coulomb oper-
ator (RO) (Pumja Rasaayani), its performance will first be compared against that of
a conventional SCF calculation using Q-Chem version 4.0.0.1 [Shao et al., 2013] on
Raijin.1 Shared-memory scaling will then be considered, with particular regard to the
effects on locality and performance of the different methods for dividing loops for
integral and J matrix calculation previously described in §4.1.2. Finally, distributed-
memory scaling will be assessed with regard to load balance and communication
required between places. The Intel Math Kernel Library version 12.1.9.293 implemen-
tation of the BLAS library was used for the X10 code.

4.2.1 Single-Threaded Performance

A single SCF cycle was performed for calculation of long-range energy using Ewald
partition parameter ω = 0.3 and accuracy threshold THRESH = 6 for various
molecules with basis sets of different quality. Molecular orbitals from diagonalization
of the core Hamiltonian and Cartesian orbitals were used for all calculations in this
section. Table 4.1 shows the time to compute Fock matrix, including auxiliary integral,
J and K matrix calculations, for various molecules on a single core of Raijin. The test
cases represent typical requirements for simulations of biological systems: clusters
of five to twenty water molecules [Maheshwary et al., 2001], and one-dimensional
(chain-like) and three-dimensional (globular) alanine polypeptides [DiStasio et al.,
2005]. In addition to computation time, the table reports characteristics of each
calculation including number of occupied orbitals O, number of basis functions N,
molecular radius R, resolution radial truncation N , and angular truncation L. For
each molecule, basis sets are ordered down the table from smallest to largest number
of basis functions. To compare the performance of Pumja Rasaayani against conven-
tional SCF calculation, the time for Fock matrix calculation using Q-Chem is also
reported.2

As discussed earlier in §2.5.2, the RO computational cost is O(ON2K). For each
molecular system in table 4.1, we can treat O and K as constants. Therefore, we

1As there is no other complete SCF implementation using resolution of the Coulomb operator (RO),
it is necessary to compare against a conventional SCF implementation.

2The reported time for Q-Chem is the “AOints” time for the full Coulomb operator. This is an
approximation to the conventional long-range J and K matrix calculation time, as the number of
integrals required to be calculated is approximately the same.

74 Electronic Structure Calculations Using X10

Table 4.1: Time to compute Fock matrix components for different molecules and basis sets
using RO on Raijin (one thread)

SCF time (s)*
RO Q-Chem

Molecule Basis set O N R N ′ L Aux J K Total Total

(H2O)5 cc-pVDZ 25 125 16.19 9 13 0.71 0.02 0.08 0.81 0.73

" cc-pVTZ " 325 ." " " 3.67 0.10 0.36 4.15 7.99

" cc-pVQZ " 700 ." " " 16.8 0.40 1.46 18.7 99.1

(H2O)10 cc-pVDZ 50 250 18.97 9 16 3.62 0.09 0.60 4.31 5.03

" cc-pVTZ " 650 " " " 20.5 0.41 3.31 24.2 60.3

" cc-pVQZ " 1400 " " " 90.8 1.51 13.8 106.4 824.0

(H2O)20 cc-pVDZ 50 500 31.07 14 25 51.1 0.77 14.5 66.3 27.2

" cc-pVTZ " 1300 " " " 314.1 3.45 81.0 398.7 346.0

" cc-pVQZ " 2800 " " " 1768 13.0 355.0 2138 5480

1D-alanine4 6-311G 77 326 34.52 15 27 23.4 0.47 6.36 30.27 6.32

" cc-pVDZ " 410 " " " 43.4 0.69 9.50 53.63 27.8

" cc-pVTZ " 1030 " " " 280.0 3.51 53.0 336.7 377.0

" cc-pVQZ " 2170 " " " 1317 19.8 243.47 1581 6530

3D-alanine4 6-311G 77 326 22.91 11 19 9.88 0.24 2.44 12.56 9.09

" cc-pVDZ " 410 " " " 18.4 0.35 3.68 22.47 37.9

" cc-pVTZ " 1030 " " " 95.2 1.61 19.5 116.4 491.0

" cc-pVQZ " 2170 " " " 413.3 5.97 80.0 500.0 8700

1D-alanine8 6-311G 153 646 61.64 24 46 502.2 4.12 188.3 694.6 27.8

" cc-pVDZ " 810 " " " 843.9 6.92 278.4 1129 119.0

" cc-pVTZ " 2030 " " " † † 1800

" cc-pVQZ " 4270 " " " † † 30600

3D-alanine8 6-311G 153 646 30.56 13 24 82.6 1.13 30.07 113.8 55.8

" cc-pVDZ " 810 " " " 142.4 1.54 44.9 188.9 208.0

" cc-pVTZ " 2030 " " " 946.7 7.49 261.7 1217 3070

" cc-pVQZ " 4270 " " " † † ‡

* We used Q-CHEM default THRESH of 8 and RO default THRESH of 6 as it has been shown
previously [Limpanuparb et al., 2013] that these default setup give comparable level of accuracy. To
confirm the reliability of our RO method, we compute ε = − log10 |E/EREF − 1| for
1D-alanine4/6-311G, 1D-alanine4/cc-pVDZ, 3D-alanine8/6-311G, 3D-alanine16/6-311G,
(H2O)5/cc-pVQZ, (H2O)10/cc-pVTZ and (H2O)20/cc-pVDZ. The εJ are 8.56, 8.87, 8.39, 8.32, 9.15, 7.92,
8.80 and εK are 7.39, 7.41, 6.94, 6.65, 8.51, 7.08, 7.60, respectively. These are in line with the earlier
result [Limpanuparb et al., 2013].
† Fock matrix for 1D-alanine8 with cc-pVTZ and cc-pVQZ basis sets, and 3D-alanine8 with cc-pVQZ
could not be computed using RO on a single place due to lack of memory.
‡ Computation failed with Q-Chem due to a numerical stability problem with ‘negative overlap matrix’
reported.

§4.2 Evaluation 75

observe that the computational time for RO increases approximately quadratically
with the number of basis functions N, as expected. Q-Chem computation time rises
much more rapidly, as conventional calculation is quartic in the number of basis
functions for a fixed molecule.

By comparison, for a fixed basis set, the relationship between system size and
computation time is not clear for either RO or conventional methods. In table 4.1,
the observed increase in computation time for both conventional and RO methods is
more than quadratic. Doubling the number of atoms (e.g. from (H2O)5 to (H2O)10)
doubles both the number of occupied orbitals O and the number of basis functions N.
It also tends to increase the resolution parameters K which depends on the molecule
radius. However, the integral screening mentioned earlier may substantially reduce
the actual computational cost when there are more atoms in the molecules. The
conventional approach which is based on four-center two-electron integrals are likely
to benefit from screening more than the RO approach which is based on three-center
overlap integral. We therefore elect to use dense linear algebra operations for K matrix
computation for reasons of efficient implementation.

A comparison of computation times for 1D- versus 3D-alanine4 shows that RO is
more effective for 3D molecules, because the required values of N ′ and L increase
with the molecular radius. This is in contrast to traditional cutoff strategies, which
are more effective for 1D chain-like molecules. RO’s effectiveness for 3D molecules is
a major advantage for biological applications, where 3D structures are the norm.

For all molecules tested, RO is slower than Q-Chem with small, low-quality basis
sets, and faster than Q-Chem with large, high-quality basis sets due to its superior
scaling with the number of basis functions.

4.2.2 Shared-Memory Scaling

We now consider the parallel speedup achievable by using multiple cores of a shared
memory system with particular focus on the method used to divide auxiliary integral
and J matrix calculations for parallel execution.

To measure parallel scaling, we selected a single test case from table 4.1: the
3D-alanine4 polypeptide with the cc-pVQZ basis set. Figure 4.9(a) shows the scaling
with number of threads of the major components of Fock matrix construction for RO
long-range energy calculation on a single node of Raijin, using the basic parallel loop
shown in figure 4.3. Figure 4.9(b) presents the same data in terms of parallel efficiency,
showing the total thread time (elapsed time × number of threads). A component that
exhibits perfect linear scaling shows constant total thread time, while an increase in
total thread time represents a loss of parallel efficiency.

In figure 4.9, total Fock matrix construction time reduces substantially from 608.9 s
on one thread to a minimum of 56.5 s on 15 threads, increasing slightly to 60.3 s on
16 threads. A node of Raijin has 16 physical cores, so ideal scaling would see linear
speedup from 1 to 16 threads. Measured speedup reduces substantially above 8
threads; this appears to be largely due to poor scaling of K matrix computation.
While the time for K matrix computation drops from 78.9 s on a single thread to

76 Electronic Structure Calculations Using X10

 0.1

 1

 10

 100

 1 2 4 8 16

ti
m

e
 (

s
)

number of threads

linear scaling
total

integrals
J matrix
K matrix

(a) Scaling

 0

 200

 400

 600

 800

 1000

2 4 6 8 10 12 14 16

to
ta

l
th

re
a

d
 t

im
e

 (
s
)

number of threads

K matrix
J matrix

integrals

(b) Efficiency

Figure 4.9: Multithreaded component scaling and efficiency of RO long range energy calcu-
lation on Raijin with basic parallel loops for integral and J matrix calculation (1–16 threads,
3D-alanine4, cc-pVQZ, N ′ = 11,L = 19).

10.8 s on 10 threads, it increases again to 15.8 s on 16 threads. The bulk of K matrix
computation for a single place is a call to a multithreaded BLAS DSYRK operation
with input matrices of dimension 2170 × 2170. The increase in computation time
suggests that the multithreaded implementation of DSYRK may be unsuitable for use
on multiple sockets of Raijin. Therefore we restricted all subsequent runs to 8 threads
per place, and for multi-place tests we ran two places per node, one bound to each
socket. J matrix computation time also increases above 8 threads and total thread
time increases substantially from 1 to 16 threads, which equates to a drop in parallel
efficiency to just 22.8%. The poor scaling of J matrix computation is due to the high
overhead of activity management relative to the cost of computation, as described in
§4.1.2.2. Auxiliary integral computation scales much better, with computation time
reducing steadily from 1 to 16 threads.

We next consider the overhead associated with work stealing. We measured the
performance of the static load balancing approaches using either block or cyclic divi-
sion of the auxiliary and J loops, as well as the recursive bisection loop transformation.
Table 4.2 compares component timings for Fock matrix construction on a single socket
of Raijin (8 cores/threads) for the four different methods of dividing the integral and
J matrix loops that were described in §4.1.2.

Auxiliary integral computation is fastest using the basic parallel loop; followed by
recursive bisection, then the static partitioning approaches. The J matrix computation
is slowest using the basic parallel loop; block static partitioning is slightly faster, due
to the reduced cost of stealing; cyclic partitioning is twice as fast as the basic loop, due

§4.2 Evaluation 77

Table 4.2: Multithreaded component scaling of RO long range energy calculation on Raijin
with different methods of dividing integral and J matrix loops between worker threads (8
threads, 3D-alanine4, cc-pVQZ, N ′ = 11,L = 19)

time (s)
component basic cyclic block bisection

(Figure 4.3) (Figure 4.4) (Figure 4.5) (Figure 4.6)

Auxiliary integrals 60.35 69.51 68.35 61.24

J matrix 3.60 2.35 2.81 1.13

Total 63.95 71.86 71.16 62.37

to improved load balance between worker threads. Recursive bisection was by far the
fastest approach for J matrix calculation, more than three times faster than the basic
parallel loop. Overall, recursive bisection is the fastest; both dynamic partitioning
approaches (bisection and basic) are significantly faster than the static partitioning
approaches (cyclic and block).

To assist in understanding the performance of the different loop partitioning
approaches, the locality of the activities executed during auxiliary integral compu-
tation was recorded for visualization using the approach presented in chapter 3.
Figure 4.10(a) shows the activities to compute integrals for functions µ, ν over 8
worker threads using the basic parallel loop shown above, for a smaller problem
size of five water molecules with the cc-pVQZ basis set. Activities are plotted in
different colors according to which worker thread executed the activity. From the plot
it is apparent that the activities for higher values of µ are all executed by the master
thread, while the other activities are randomly distributed between the remaining
threads. Figure 4.10(b) shows that with the cyclic decomposition, activities are dealt
evenly to all threads, while figure 4.10(c) shows that with the block decomposition,
each thread receives a roughly even-sized contiguous portion of µ, ν. Figure 4.10(d)
shows that with recursive bisection, the bulk of the activities are divided into large,
irregularly-sized, contiguous chunks. For this problem, both the cyclic decomposi-
tion and recursive bisection approaches result in even distribution of work, however,
only recursive bisection also results in good locality of activities, which explains its
superior performance.

We now return to the scaling and efficiency of multithreaded Fock matrix cal-
culation for the same polyalanine system previously measured in figure 4.9. Fig-
ures 4.11(a) and 4.11(b) display the parallel scaling and efficiency achieved with
recursive bisection of loops to compute auxiliary integrals and J matrix contributions.

The overall speedup is improved; the total time on 16 threads is 58.8 s in fig-
ure 4.11(a) using recursive bisection compared to 60.3 s in figure 4.9(a) with the basic
parallel loop. The greatest difference is in J matrix calculation; the increase in total
thread time (loss of parallel efficiency) is much smaller with the recursive bisection

78 Electronic Structure Calculations Using X10

(a) Basic (Random) (b) Cyclic

(c) Block (d) Recursive Bisection

Figure 4.10: Locality of auxiliary integral calculation on Raijin with different methods of
dividing integral loop between worker threads (8 threads, [H2O]5, cc-pVQZ, N ′ = 9,L = 13).
Activities executed by each worker thread are shown in a different color.

§4.2 Evaluation 79

 0.1

 1

 10

 100

 1 2 4 8 16

ti
m

e
 (

s
)

number of threads

linear scaling
total

integrals
J matrix
K matrix

(a) Scaling

 0

 200

 400

 600

 800

 1000

2 4 6 8 10 12 14 16

to
ta

l
th

re
a

d
 t

im
e

 (
s
)

number of threads

K matrix
J matrix

integrals

(b) Efficiency

Figure 4.11: Multithreaded component scaling and efficiency of RO long range energy calcu-
lation on Raijin with recursive bisection of loops for integral and J matrix calculation (1–16
threads, 3D-alanine4, cc-pVQZ, N ′ = 11,L = 19).

approach. Given the superior performance of the recursive bisection approach, we
use it in all subsequent measurements.

4.2.3 Distributed-Memory Scaling

Figure 4.12 shows the strong scaling with number of X10 places on Raijin of Fock
matrix construction, for 3D-alanine4 with the cc-pVQZ basis set. Total Fock matrix
construction time drops from 86.5 s on a single place (one socket) to 6.9 s on 64 places.
Auxiliary integral calculation decreases with increasing number of places. K matrix
calculation time decreases from 1 to 32 places, but increases above 64 places. Total
computation time increases above 128 places.

Table 4.3 shows both Fock matrix and auxiliary integral load imbalance with
varying numbers of places for Fock matrix construction using RO for 3D-alanine4.
Both measures of load imbalance tend to rise with the number of places. Auxiliary
integral imbalance Laux is larger than Fock matrix imbalance LFock for all numbers
of places. Imbalance for 32 places is already quite severe, and limits the maximum
parallel efficiency achievable to 72% assuming no parallel overhead or sequential
bottlenecks. This suggests that the data distribution and load balancing schemes
described in §4.1.3–§4.1.4 cannot balance load sufficiently evenly to achieve strong
scaling.

As well as load imbalance, communication overhead represents a barrier to strong
scaling. To compute the local portion of the K matrix, each place performs a number

80 Electronic Structure Calculations Using X10

 0.01

 0.1

 1

 10

 100

 1 2 4 8 16 32 64 128

ti
m

e
 (

s
)

number of places

linear scaling
total

integrals
J matrix
K matrix

Figure 4.12: Multi-place component scaling of RO long range energy calculation (8 threads
per place, 3D-alanine4, cc-pVQZ, N ′ = 11,L = 19)

Table 4.3: Distributed Fock matrix construction using RO: calculated load imbalance between
different numbers of places on Raijin (3D-alanine4, cc-pVQZ, N ′ = 11,L = 19))

Load imbalance
places LFock Laux

2 1.000 1.002

3 1.002 1.098

4 1.014 1.055

5 1.007 1.064

6 1.009 1.163

8 1.032 1.166

12 1.051 1.174

16 1.069 1.287

32 1.106 1.379

64 1.298 1.530

§4.2 Evaluation 81

of DGEMM operations to multiply different sized blocks of B as described in §4.1.5.
For each DGEMM, an m× k block of matrix B is transferred from another place and
multiplied (transposed) with the local n × k block of B; the resulting m × n block
is accumulated to matrix K. Thus each DGEMM requires the transfer of mk word-
length matrix elements and performs 2(mnk) floating-point operations. Table 4.4
shows the floating-point and communication intensity for DGEMM operations in
K matrix construction for the same problem on different numbers of X10 places.
For each number of places, the table shows: the calculated range of floating-point
intensities (in FLOPs to words), in other words the ratio of the number of FLOPs
performed by DGEMM to the number of words required to be transferred between
places; the measured range of floating-point performance of DGEMM in GFLOP/s;
and the measured range of transfer rates in Gword/s. Theoretical peak FLOP/s on
an eight-core Sandy Bridge socket of Raijin is 166 GFLOP/s, and MPI bandwidth is
approximately 0.75 Gword/s. Therefore to achieve peak FLOP/s on Raijin requires a
floating-point intensity of more than 220 FLOP/word.

Table 4.4: Distributed K matrix construction using RO: DGEMM floating-point and com-
munication intensity with different numbers of places on Raijin (3D-alanine4, cc-pVQZ,
N ′ = 11,L = 19)

calculated measured
places Floating-point intensity Computation rate Transfer rate

(FLOP/word) (GFLOP/s) (Gword/s)

2 2170 – 2170 102.4–150.4 0.041–0.072

4 1070 – 1100 110.2–145.4 0.051–0.138

8 530 – 548 90.4–134.6 0.070–0.342

16 260 – 286 48.7–106.6 0.073–0.665

32 110 – 150 12.1– 84.1 0.044–1.253

64 52 – 88 2.4– 68.7 0.017–1.206

The FLOP/word ratio drops approximately linearly with number of places, as the
average size of blocks of B drops linearly with the number of places. The measured
performance of DGEMM and minimum transfer rate also drop with shrinking block
size. The decreasing floating-point intensity means that strong scaling hits a limit for
this problem size at 32 places; after this, no further reduction in K matrix computation
time is possible.

As the X10 version of RO is the only distributed implementation of the algorithm,
it was not possible to perform a comparison against a reference implementation.
Comparison with high-performance distributed codes for Hartree–Fock computation
such as NWChem [Valiev et al., 2010] would be of benefit in future work.

82 Electronic Structure Calculations Using X10

4.3 Summary

This chapter described the use of the X10 programming language to implement
Hartree–Fock electronic structure calculations. A distributed implementation of
the linear scaling resolution of the Coulomb operator method was presented. This
method has lower asymptotic scaling than conventional algorithms for Hartree–Fock
calculations, and may be effectively parallelized both to reduce computation time
(strong scaling) and allow the treatment of larger problems (weak scaling). The com-
putation of Fock matrix elements is an irregular problem; X10’s work stealing runtime
provides load balancing between worker threads within a place, while data decompo-
sition and transfer between places is supported by distributed data structures using
X10’s explicit representation of locality. In the following chapter, we consider another
application with more complex distributed data structures.

Chapter 5

Molecular Dynamics Simulation
Using X10

This chapter describes the application of the APGAS programming model in molec-
ular dynamics simulation, with particular focus on the problem of calculating non-
bonded electrostatic interactions. Three different methods for calculating electrostat-
ics are implemented: direct calculation of pairwise interactions (§5.1), the particle
mesh Ewald method (§5.2) and the fast multipole method (§5.3). For each method, the
corresponding section first presents those features of the X10 programming language
and the APGAS programming model which enable the concise expression of paral-
lelism, data locality and synchronization within the algorithm. The improvements to
the X10 programming language that were presented in chapter 3 are demonstrated in
the context of the implementation. The performance of each implementation is eval-
uated on representative parallel computing architectures and compared with state-
of-the art implementations in GROMACS [Hess et al., 2008] and exaFMM [Yokota,
2013].

Portions of this chapter have been previously published in Milthorpe et al. [2011],
Milthorpe and Rendell [2012] and Milthorpe et al. [2013]. All source code included
in this chapter as well as the benchmarks used in evaluation are distributed as part
of ANUChem [ANUChem].

5.1 Direct Calculation

In a system of atoms interacting under non-bonded electrostatic forces, each atom
experiences a force which is the sum of forces due to every other atom in the system.
Likewise, the electrostatic potential of the system is the sum of potentials between all
pairs of atoms in the system. The most straightforward way of evaluating electrostatic
interactions is to directly calculate the force and potential between individual pairs
of particles. This method may be used to calculate interactions between all pairs of
particles in the system, however, as there are Θ(N2) pairs of particles, this method
is expensive for large systems. More commonly, direct calculation is only used for

83

84 Molecular Dynamics Simulation Using X10

1 for (atomI in atoms) {
2 for (atomJ in atoms) {
3 if (atomI != atomJ) {
4 val rVec = atomJ.centre - atomI.centre;
5 val invR2 = 1.0 / rVec.lengthSquared();
6 val invR = Math.sqrt(invR2);
7 val e = atomI.charge * atomJ.charge * invR;
8 potentialEnergy += 2.0 * e;
9 atomI.force += e * invR2 * rVec;

10 }
11 }
12 }

Figure 5.1: X10 code for direct calculation of electrostatic interactions between particles

short-range interactions up to some cutoff distance, and longer-range interactions
are either neglected entirely, or else evaluated using an approximate method such as
a particle mesh method (§5.2) or fast multipole method (§5.3). In any case, a large
number of interactions must be evaluated directly, and an efficient method of direct
calculation is required.

5.1.1 Implementation

The force and potential for a given particle are calculated by summing over its inter-
actions with all other particles in the system. Figure 5.1 shows sequential X10 code
to perform such a direct evaluation.

While the code in figure 5.1 is correct and easy to understand, it may not achieve
high floating-point performance on typical computing architectures. Some of the
issues that limit the performance of direct calculation, and techniques that may be
used to overcome them, include:

• The division and square root operations are expensive (taking dozens of cycles)
and may not be pipelined. On a typical x86 architecture such as Sandy Bridge,
the combined latency of the divide and square root operations is around 40
cycles [Intel, 2011].

Many molecular dynamics codes use a combined divide–square root function
(a reciprocal square root) to reduce this cost. The GROMACS [Hess et al.,
2008] generic non-bonded kernel for Coulomb interactions (nb_kernel100.c) con-
tains 27 floating point operation (FLOP)s per interaction, including a reciprocal
square root.

Some instruction set architectures provide an approximate reciprocal square
root operation, which has a significantly lower latency and may also be pipelined.
Using such an operation may dramatically reduce the number of cycles required
to compute a single interaction, at the cost of reduced accuracy. For example,

§5.1 Direct Calculation 85

exaFMM [Yokota, 2013] uses single-precision Intel reciprocal square root opera-
tions which have a latency of 6 cycles. Using an approximate reciprocal square
root operation, Chandramowlishwaran et al. [2010] give a figure of 19 instruc-
tions for potential evaluation only, which takes roughly 17 cycles to execute.

• To take full advantage of the floating-point capabilities of a modern CPU re-
quires the use of vector instructions to compute arithmetic instructions for
multiple interactions at once. This requires either that the programmer write
vectorized code for the target architecture, or that the compiler can automati-
cally vectorize the code. Compiler vectorization may fail if, for example, the
compiler cannot determine that potential vector operands are independent.

exaFMM [Yokota, 2013] uses hand-written AVX and SSE instructions, includ-
ing a vectorized approximate reciprocal square root operation, to maximize
performance on Intel architectures.

• Running both the outer and the inner loop of figure 5.1 over all N particles
performs some redundant calculation. According to Newton’s third law (mutual
interaction), for a given pair of particles A and B, the force on A due to B may
be calculated and applied to A, and then an equal and opposite force applied
to B merely by reversing the sign on the force vector. Thus the number of
floating-point calculations required may be roughly halved.

However, this apparent efficiency creates problems for multithreaded computa-
tion. If mutual interaction is used, then multiple threads must update the force
on each particle, which requires that the updates be synchronized. For this
reason, the forces on each particle are usually computed independently without
the use of mutual interaction.

In molecular dynamics simulation on distributed memory architectures, direct
calculation requires the communication of updated particle positions between all pro-
cesses at each timestep, which makes this method fundamentally non-scalable [Hef-
felfinger, 2000]. For this reason, direct calculation is typically used only for short-
range interactions up to a given cutoff distance, in combination with an approximate
method for treating long-range interactions.

5.1.2 Evaluation

As direct calculation of electrostatics is an important building block for larger molecu-
lar dynamics codes, it is necessary first to show that it can be efficiently implemented
in X10 before considering more complex methods. The X10 code in figure 5.1 was
used to evaluate potential and forces for systems of varying numbers of atoms. The
number of cycles and FLOPs per evaluation was measured using PAPI [Browne et al.,
2000], and compared with an equivalent C++ code. Table 5.1 shows the cycles per
interaction measured for each code for various system sizes.

To evaluate a single interaction (energy and forces) using the code as written
in figure 5.1 requires 9 adds, 9 multiplies, 1 division and 1 square root, for a total

86 Molecular Dynamics Simulation Using X10

Table 5.1: Direct calculation of electrostatic force: cycles per interaction, X10 vs. C++ on Core
i7-2600 (one thread) for varying numbers of particles.

cycles

n X10 C++

10,000 40.4 40.4

20,000 40.4 40.4

50,000 40.5 40.4

100,000 42.5 40.4

of 20 floating-point operations. There are also 10 memory operations (7 loads and
three stores) on 8-byte floating-point values. The balance between floating-point
and memory operations is therefore 0.25 FLOPs per byte. For both codes, a single
interaction took slightly over 40 cycles to compute. This is a poor floating-point
intensity of around 0.5 FLOP/cycle, largely due to the expensive square root and
division operations which cannot be vectorized. The X10 code was slightly slower for
larger numbers of particles, probably due to the effects of differing memory layouts
on cache usage. The measured cycles per interaction are very similar between the two
codes, therefore the X10 language implementation does not add significant overhead
for this kernel. A parallel implementation of this kernel will be evaluated later in the
context of the fast multipole method in §5.3.

5.2 Particle Mesh Ewald Method

The particle mesh Ewald method (PME) (as described in §2.6.2) avoids the need
for calculating interactions between every pair of particles by splitting the force
into a short-range component which falls off rapidly and a long-range component
which is calculated approximately in reciprocal space. The short-range component
is evaluated directly up to a chosen cutoff distance; the greater this distance, the
higher the accuracy of the result. This substantially reduces the work required to
calculate electrostatic interactions for large periodic molecular systems. However,
computing in reciprocal space requires the use of FFTs, which implies an all-to-all
communication pattern that may limit scalability.

5.2.1 Implementation

An implementation of PME was constructed in the X10 language using the improve-
ments previously described in chapter 3. For a distributed PME, four issues merit
special consideration: the domain decomposition of particle data and the charge grid
between X10 places; efficient interpolation of charges to the grid; the exchange of
particle data between places in calculating direct interactions; and the implementation
of a distributed FFT.

§5.2 Particle Mesh Ewald Method 87

5.2.1.1 Domain Decomposition With Distributed Arrays

The central data structure in PME is the charge grid array. This is a three-dimensional
array of grid points of dimension K[x,y,z]. The charge grid array is divided between
places in both the x and y dimensions. This is accomplished in X10 using the two
dimensional block distribution class BlockBlockDist.

1 val gridRegion = Region.make(0..Kx, 0..Ky, 0..Kz);
2 val gridDist = Dist.makeBlockBlock(gridRegion, 0, 1);
3 Q = DistArray.make[Complex](gridDist);

Figure 5.2: X10 code to distribute charge grid array in PME

Figure 5.2 shows the X10 code for constructing the charge grid array. Line 2
defines a block distribution over all grid points, divided first along dimension 0 (the x
dimension) and then along dimension 1 (the y dimension). The division is performed
so that blocks are as near as possible to square in shape to maximize data locality.

5.2.1.2 Charge Interpolation Over Local Grid Points

Long-range interactions are calculated over a gridded charge distribution [Essmann
et al., 1995]. Each charge is spread over a number of grid points using B-spline
interpolation. The charge spreading is challenging to parallelize due to the fact that
each charge contributes to multiple overlapping grid points. If the ‘owner-computes’
rule is used with distributed processes, some charges must be replicated to allow
each process to compute its portion of the grid. If the ‘owner-stores’ rule is used,
synchronization is required to ensure the correct accumulation of charges to each
grid point. The owner-computes rule is preferable for multithreaded computation, as
it minimizes synchronization.

Our code uses lattice-centric (owner-computes) charge interpolation as suggested
by Ganesan et al. [2011], but differs from their scheme in that it does not use neighbor
lists. Instead, the code divides the charges into subcells with a side length equal to
half the direct interaction cutoff distance. Each place considers charges in a region of
subcells surrounding its resident lattice points. The same subcells are also used in the
calculation of direct particle-particle interactions (see §5.2.1.3). The basic structure of
the charge interpolation code is shown in figure 5.3. Line 2 uses the getLocalPortion
() method described in chapter 3 to return the local portion of the distributed charge
array Q as a zero-based rectangular array, allowing it to be efficiently indexed in the
tight loop on lines 10–12. In contrast, if Q were to be used directly, this would require
a virtual function lookup for each read and write access within the tight loop.

5.2.1.3 Use of Ghost Region Updates to Exchange Particle Data

For efficient implementation the particles are divided into subcells for which the
side length is some rational fraction of the cutoff distance. Thus the particles in a

88 Molecular Dynamics Simulation Using X10

1 finish ateach(place in Q.dist.places()) {
2 val qLocal = Q.getLocalPortion();
3 val gridRegionLocal = qLocal.region;
4 val haloRegionLocal
5 = getSubcellHaloRegion(gridRegionLocal);
6 for ([x,y,z] in haloRegionLocal) {
7 for (atom in subcell(x,y,z)) {
8 // fill splines for atom
9 // accumulate splines to local grid

10 for ([k1,k2,k3] in spreadRegion) {
11 qLocal(k1,k2,k3) += atomContribution;
12 }
13 }
14 }
15 }

Figure 5.3: X10 code to interpolate charges to grid points in PME

subcell interact with a defined neighborhood of subcells. Figure 5.4 shows one such
neighborhood or halo region.

Place 1Place 0

Direct
cutoff

Subcell halo region

Figure 5.4: Subcell halo region used to calculate direct interaction in PME

The white square containing particles in the center of the figure represents the
target subcell containing particles for which direct interactions must be calculated;
the halo region comprises all subcells within the large black square, and includes all
cells which are partially or wholly within the direct cutoff distance from any point in
the target subcell. Note that the direct cutoff region for the white box is not a sphere
but a cube with rounded edges.

Figure 5.4 also illustrates the requirement for exchange of particle data between
places. The target subcell is held at place 0, along with all subcells colored blue; the

§5.2 Particle Mesh Ewald Method 89

subcells colored red are held at place 1. In order to calculate direct interactions, it is
necessary to communicate particles from all remotely held subcells to place 0.

An early version of the code used an application-specific ghost region update to
gather subcells from neighboring places. The code was altered to use ghost region
updates as described in §3.3.2, which reduced the size of the application code from
682 to 617 non-comment source lines while maintaining equivalent performance.
Assuming that code size (in number of lines) corresponds to programmer effort, this
example illustrates the benefit to programmer productivity of efficient high-level
operations on distributed data structures.

5.2.1.4 Distributed Fast Fourier Transform

At the heart of the PME method are two 3D FFTs performed on the charge mesh. A
3D FFT may be divided between distributed places in one dimension (slab decompo-
sition) or in two dimensions (pencil decomposition). A slab decomposition reduces
the number of transpose communications required, whereas a pencil decomposition
allows the grid to be divided between a larger number of places.

In our implementation, 3D FFT is decomposed into a series of 1D FFTs, inter-
spersed with transpose operations to redistribute the data so that each place’s data
are complete in one dimension for each FFT [Eleftheriou et al., 2003]. The particle
mesh is divided between places in both the x and y dimensions, meaning each place
holds a thick pencil extending through the entire z dimension. Each of the 1D FFTs
is computed by a native call to FFTW [Frigo and Johnson, 2005]. The transpose is an
all-to-all communication, with the following code executed at each place:

1 def transpose(
2 source : DistArray[Complex](3),
3 target : DistArray[Complex](3)) {
4 finish {
5 for (p2 in source.dist.places()) {
6 val transferRegion : Region(3) = //
7 val toTransfer = // ...
8 at(p2) async {
9 var i : Int = 0;

10 for ([x,y,z] in transferRegion) {
11 // transpose dimensions
12 target(z,x,y) = toTransfer(i++);
13 }
14 }
15 }
16 }

5.2.2 Evaluation

To evaluate our PME implementation, we compare its performance with that of the
GROMACS 1 software package, previously described in §2.6.2. GROMACS version

1http://www.gromacs.org/

90 Molecular Dynamics Simulation Using X10

4.5.5 was used for comparison. We evaluate first base single-threaded performance
and then distributed scaling across multiple nodes of a distributed memory cluster.

5.2.2.1 Single-Threaded Performance

We performed a sequence of 1000 force calculations with the X10 PME implementation
and measured the average time for the mesh component of the calculation, that is,
the long range force only. As a comparison, we performed molecular dynamics runs
for 1000 timesteps using GROMACS for various-sized cubic boxes of water molecules
and measured the mean time for the PME mesh component of the calculation. Water
boxes were generated using GROMACS genbox and equilibrated for 10,000 timesteps
before measurement runs. A grid spacing of 0.9 nm and a direct cutoff of 1 nm were
used for both codes for all systems.

Figure 5.5 shows the performance of our PME code against that of GROMACS on a
single Sandy Bridge core (Core i7-2600) for a range of particle numbers between 12,426
and 1,067,037. (Non-round numbers of particles are due to the use of equilibrated
cubic water boxes of fixed density.)

10
-3

10
-2

10
-1

10
0

10
4

10
5

10
6

ti
m

e
 (

s
)

number of particles

O(N log N)

 GROMACS PME mesh
 X10 PME mesh

Figure 5.5: Comparison between X10 and GROMACS PME mesh evaluation on Core i7-2600
(one thread): scaling with number of particles (β = 0.35, direct cutoff = 1 nm, mesh spacing =
0.9 nm).

For the smallest system of 12,426 atoms, GROMACS takes approximately 3.4 ms
and the X10 code takes approximately 8 ms per mesh evaluation. This rises in line
with the expected O(N log N) scaling to approximately 320 ms and 690 ms respec-
tively for 1,067,037 atoms. Across this range of system sizes, the X10 code is approxi-
mately 2.0–2.4 times slower than GROMACS. A previously published implementation
was almost two orders of magnitude slower than GROMACS [Milthorpe et al., 2011];

§5.2 Particle Mesh Ewald Method 91

the difference in the current version is due largely to the efficient indexing of local
data using getLocalPortion() as described in §5.2.1.2.2

5.2.2.2 Distributed-Memory Scaling

Figure 5.6 presents strong scaling results for force evaluation of a system of 33,226
water molecules in a 10 Å cubic box on Raijin. Also shown is a breakdown of timings
for the major components of the calculation: the interpolation of charges to the mesh;
FFTs; direct calculation of short-range interactions and prefetch of particle data from
neighboring places.

 0.001

 0.01

 0.1

 1

 1 2 4 8 16 32 64 128

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 (

s
)

number of places

linear scaling
total

charge grid
FFT

direct
prefetch

Figure 5.6: Strong scaling of PME potential calculation for 33k water molecules on Raijin (8
cores per place, β = 0.35, cutoff = 10 Å, grid size = 96.

The total time for evaluation on a single place (1 socket, eight cores) is 0.45 s, of
which the major components are direct calculation and interpolation of charges to
the grid. Total time reduces from 0.45 s on 1 place to 0.047 s on 128 places (1024
cores), due to significant reductions in both of these components. In contrast, there
is no reduction in prefetch time with increasing number of places, as the number
of messages per place remains roughly constant. On a single place, FFT is a small
component as it may be performed as a single 3D FFT using FFTW, however, this
component jumps significantly for two places as data transpose is required between
places. FFT time remains roughly constant above 16 places due to the all-to-all
communication required; it is therefore the limiting factor in scaling PME to large
numbers of places.

2The cost of accessing local data through a virtual function call on a DistArray is paid whether or
not the data are actually distributed, so the use of getLocalPortion() improves performance for
single-place as well as multi-place execution.

92 Molecular Dynamics Simulation Using X10

5.3 Fast Multipole Method

In contrast to PME, the fast multipole method (FMM) does not require all-to-all
communications and so in principle should scale better to larger numbers of nodes. In
addition, compared to particle-mesh methods FMM is highly floating-point intensive,
which makes it an attractive application for exascale systems [Yokota, 2013].

5.3.1 Implementation

The fast multipole method is a complex, multi-stage algorithm which allows for
parallelism at multiple levels. As with PME, the most basic parallelism is between
computation of near- and far-field interactions, which are independent other than the
need to synchronize updates to forces on particles. Within each step of the algorithm
as described in §2.6.3, evaluation of each box may proceed independently, although
there are dependencies between stages and levels. For example, the local expansion
of the parent box is an input to the computation of the local expansion of each child
box.

Our code, called PGAS-FMM, uses activities of box-level granularity, and overlaps
computation with communication where possible. At a high level, the fetching of
particle data for near-field interactions (P2P) overlaps with all bar the final phase of
computation, as follows:

1 finish ateach(place in Place.places()) {
2 finish {
3 async fetchParticleData(); // required for P2P
4 upwardPass(); // P2M, M2M
5 multipolesToLocal(); // M2L
6 }
7 downwardPass(); // L2L, L2P, P2P
8 }

In the above code, the async statement on line 3 starts an activity to fetch particle
data from neighboring places. Each place constructs a local essential tree [Warren
and Salmon, 1992], which contains only that portion of the tree that is necessary
to compute interactions for boxes owned by the current place. Fetching particle
data for boxes in the local essential tree proceeds in parallel with the upwardPass()
and/or multipolesToLocal() phases. The inner finish block (lines 2–6) ensures
that fetching is completed before the downwardPass(), which includes near-field
computation (P2P).

Calculation of far-field interaction uses spherical harmonics with rotation-based
translation and transformation operations as described by White and Head-Gordon
[1996], with rotation matrix relations as given by Dachsel [2006].

FMM, like other tree-structured codes, operates by means of traversals of the
tree. A pre-order traversal operates first on boxes at the highest level of the tree, then
recursively on child boxes. In contrast, a post-order traversal operates first on child
boxes. We divide each tree traversal into one activity for each box. Therefore the

§5.3 Fast Multipole Method 93

number of activities in a traversal of a tree of Dmax levels is

8Dmax + 8Dmax−1 + ... + 82. (5.1)

(The topmost level of boxes is not included in the traversal as there are no far-field
evaluations at this level.) For example, for a complete tree of 5 levels, the number of
activities for a traversal is 37440.

In implementing these activities for efficient computation on a distributed archi-
tecture, two significant issues are the construction of a distributed tree structure, and
load balancing the activities between places in the computation. In our implementa-
tion, a third issue arises from the use of a global load balancing approach: the need
for efficient global collective communication. We consider these three issues in the
following sections.

5.3.1.1 Distributed Tree Structure Using Global References

The tree is composed of lowest-level boxes containing particles, represented by the
class LeafOctant, and boxes at higher levels, represented by the class ParentOctant.
Both classes inherit from Octant, defined as follows:

1 public abstract class Octant {
2 public id:OctantId;
3 public var parent:Octant;
4 public val multipoleExp:MultipoleExpansion;
5 public val localExp:LocalExpansion;
6 abstract traverse[T,U](parentRes:T,
7 preFunc:(a:T)=>T,
8 postFunc:(c:List[U])=>U
9):U;

10 ...
11 }

The following code performs the traversal of a subtree for a parent octant:

12 class ParentOctant extends Octant {
13 public val children:Rail[Octant];
14 traverse[T,U](parentRes:T,
15 preFunc:(a:T)=>T,
16 postFunc:(c:List[U])=>U
17):U {
18 val myRes = preFunc(parentRes);
19 val childRes = new Rail[T](numChildren);
20 finish for([i] in children) {
21 async childRes[i] =
22 children[i].traverse(myRes, preFunc, postFunc);
23 }
24 val x = postFunc(childRes);
25 // store for use by ghost
26 atomic this.result = x;
27 return result;

94 Molecular Dynamics Simulation Using X10

28 }
29 traverse[T,U](postFunc:(c:List[U])=>U):U {
30 val childRes = new Rail[T](numChildren);
31 finish for([i] in children) {
32 async childRes[i] =
33 children[i].traverse(postFunc);
34 }
35 val x = postFunc(childRes);
36 return result;
37 }
38 }

On lines 15 and 16, preFunc and postFunc are arbitrary closures. They are used
in FMM to translate or transform multipole expansions. Lines 20–23 traverse each
child in parallel using the result of preFunc for the parent (a pre-order traversal).
Line 24 executes postFunc for the parent, which typically involves a reduction over
the result of postFunc for all children (a post-order traversal). Line 26 atomically
sets the result field for the parent octant. The atomic statement is necessary to allow
progress for any activities that are currently waiting on the result field. Lines 29–37
are a simplified version of traversal for the case where only post-order traversal is
required.

The PGAS programming model in X10 allows for the construction of distributed
pointer-based data structures. X10 provides a special type GlobalRef, which is a
global reference to an object at one place that may be passed to any other place.
Rather than using GlobalRef directly for child or parent references, we use it to
implement a proxy class, GhostOctant, which sends an active message to the host
place of a remote box. If a child box is held at a different place to its parent, a
GhostOctant is created for the child and linked from the parent box.

During tree traversal, the GhostOctant creates an active message to the child’s
host place to get the aggregate representation of the child. If a pre-order traversal is
required, the active message initiates computation at the host place as follows:
1 class GhostOctant extends Octant {
2 private var target:GlobalRef[Octant];
3 traverse[T,U](parentRes:T,
4 preFunc:(a:T)=>T,
5 postFunc:(c:List[U])=>U
6):U {
7 at(target.home) {
8 val t = target();
9 return t.traverse(parentRes, preFunc, postFunc);

10 }
11 }
12 ...

Lines 7–10 generate an active message to the home place of the target octant to
compute and return the aggregate representation of the octant.

If only post-order traversal is required, then the various subtrees at each place
can be evaluated in parallel, without waiting for evaluation of parent octants held

§5.3 Fast Multipole Method 95

at other places. In this case, a GhostOctant can simply return the value of the host
octant that has previously been computed at the host place. Continuing on from the
previous listing:

12 ...
13 traverse[U](postFunc:(c:List[U])=>U):U {
14 at(target.home) {
15 val t = target();
16 when(t.result != null);
17 return t.result;
18 }
19 }

The statement when(...); on line 16 is a conditional atomic statement, i.e. it blocks
the current activity until the condition is true, during which time other activities can
perform useful work. The thread may proceed once the condition has been set to true
by an atomic block in another activity initiated separately at the host place.

5.3.1.2 Load Balancing

Exposing parallelism through parallel activities does not by itself ensure the efficient
use of available processing resources. Load balancing between processing elements
is necessary to ensure full utilization of resources.

Load balancing FMM presents two challenges: the difference in number of poten-
tial interactions for boxes on the edge of the simulation space compared with those
for interior boxes, and differences in the work lists for near- and far-field interac-
tions [Kurzak and Pettitt, 2005]. The first issue does not arise in molecular dynamics
simulations with periodic boundary conditions, as with the periodic FMM every box
can be considered an ‘inside’ box (with 26 neighbors). However for our simulation it
is important because periodic boundary conditions do not apply. The second issue
occurs because the major components of the near- and far-field interactions — the
P2P and M2L steps described in §2.6.3 — are proportional to the number of par-
ticles within neighboring boxes and the number of boxes in well-separated boxes
respectively. As these values are not directly correlated, the balance of work for each
component will be different for each box. One approach to load balancing uses a
separate domain decomposition for the near- and far-field computations [Kurzak and
Pettitt, 2005]. An alternative is to use a single domain decomposition based on a
combined work estimate for both components [Lashuk et al., 2009].

Load Balancing Between Places

We chose to implement a single domain decomposition of the FMM tree based on
work estimates for each box at the lowest level. A full work estimate for FMM would
contain many terms, accounting for computation and communication in each stage of
the algorithm. However, a simple two-part estimate is possible based on two simplify-
ing assumptions: first, that FMM is heavily compute-bound on current architectures
(although this assumption may become false as early as 2020) [Chandramowlishwaran

96 Molecular Dynamics Simulation Using X10

et al., 2012]; and second, that only the direct interaction (particle-to-particle or P2P)
and multipole-to-local (M2L) steps contribute significantly to the total runtime. Given
these assumptions, it is possible to estimate the work due to a box B containing n
particles, given an average q particles per lowest level box.

The cost of computing a single direct interaction CP2P and the cost of computing a
single multipole-to-local transformation CM2L may be estimated at runtime as part of
the ‘setup’ for the method by executing a small number of P2P and M2L kernels on the
target architecture. The U-list U(B) is the list of all neighboring boxes. P2P (particle-
to-particle) interactions are computed for all n particles in box B with every particle
in all boxes in the U-list. Therefore the cost of computing near-field interactions for
box B is

costu(B) = CP2P · n · |U(B)| · q. (5.2)

The V-list V(B) is the list of all well-separated boxes for which the parent boxes
are not also well separated. M2L transformations are computed for all boxes in the
V-list. Therefore the cost of computing far-field interactions for box B is

costv(B) = CM2L · |V(B)|. (5.3)

The estimate for the total work due to box B is simply

cost(B) = costu(B) + costv(B). (5.4)

The cost estimate above is used to divide the lowest-level boxes between places.
Boxes are sorted using Morton ordering and portions of the Morton curve are as-
signed to each place so that the cost of each portion is roughly equal.

Load Balancing Within a Place

The work required for traversal varies substantially between boxes; it is therefore
necessary to load balance activities between the worker threads within a place. This
is performed by the X10 work stealing runtime; once a thread becomes idle it attempts
to steal work from the queue of another thread. Work stealing leads to good locality
when applied to tree traversals, as the earliest created (and stolen) activities are those
at the higher levels of the tree. The lower level activities created and processed by
each thread will therefore tend to belong to the same subtree, which means that they
can reuse cached data pertaining to that subtree. As boxes are stored in memory in
Morton order, boxes that are close together in space also tend to be close together in
memory. The locality generated by work stealing within an FMM force calculation
will be evaluated in §5.3.2.3.

§5.3 Fast Multipole Method 97

5.3.1.3 Global Collective Operations

For an algorithm to be truly scalable it cannot include global synchronous commu-
nications, as was seen previously with the all-to-all communications limiting the
scalability of PME in §5.2. However, if such communications make up only a small
portion of the runtime for small numbers of places, they may not prevent scaling
the code to problem sizes of interest. Furthermore, an algorithm which uses global
properties or global synchronization may be significantly simpler to implement than
one which only relies on local or asynchronous communication.

The load-balancing approach described in §5.3.1.2 is an example of such an al-
gorithm. Each place determines how many boxes should be transferred to or from
neighboring places by comparing the cost estimate for the boxes it currently holds
with the total cost estimate for the system. To determine the total cost estimate, how-
ever, requires the local costs at each place to be combined using a global all-reduce
operation over all places.

During far-field evaluation, a global barrier is used to ensure that all multipole
expansions have been transferred before commencing the multipole-to-local (M2L)
transformations. Barrier, all-reduce and other collective operations are provided by
the x10.util.Team API, and are hardware accelerated where possible [Grove et al.,
2011]. Exploratory benchmarks of these collective operations suggested that they are
not a limiting factor for the small to moderate numbers of places considered here. For
very large place counts this is likely, however, to become a bottleneck. At that point
one alternative approach would be to communicate the multipole and particle data
using active messages with only local synchronization between neighbors [Milthorpe
and Rendell, 2012].

5.3.2 Evaluation

In evaluating the performance of PGAS-FMM, we compare it to a state-of-the-art
implementation, and determine whether performance differences are due to algo-
rithm or technology. Specifically we consider i) the overall performance of the code
when running on a single core and the efficiency of each major component of the
algorithm; ii) the overhead of X10 activity management; iii) multithreaded scaling of
each component; and iv) distributed scaling on two multiple places for typical HPC
architectures with different CPU and network characteristics.

All simulations reported in this section used uniform lattice distributions over
[−1, 1]3 with total charge ∑ qi = 1 and equal particle charges of 1

n . As FMM permits a
tradeoff between accuracy and computation time, we compare two different settings
for the parameter p, the number of terms in the multipole and local expansions.
These are: low-accuracy calculation with p = 3, which for the systems considered
here corresponds to a root-mean-squared force error of ε ≤ 10−2 (potential error
εU ≤ 10−3); and a high-accuracy calculation with p = 6, which corresponds to a
root-mean-squared force error ε ≤ 10−4 (potential error εU ≤ 10−6). While the code
supports changing the value of the well-spacedness parameter ws, all simulations
reported here use a well-spacedness of 1, which is the only value supported by the

98 Molecular Dynamics Simulation Using X10

comparison implementation.

5.3.2.1 Single-Threaded Performance

We first compare the single-threaded performance of our code against exaFMM [exa-
FMM]. We used both codes to calculate forces and potential to low accuracy (p = 3,
RMS force error ε ≤ 10−2) for a range of particle numbers between 10,000 and
1,000,000. Figure 5.7 compares the performance of PGAS-FMM with that of exaFMM
on a single Sandy Bridge core (Core i7-2600). For low accuracy calculations3, our code
is between 9 and 25 times slower than exaFMM across this range. This difference
is similar to that observed by Yokota [2013] when the performance of exaFMM was
compared with four other major open-source FMM or tree code implementations for
a similar benchmark.

10
-2

10
-1

10
0

10
1

10
4

10
5

10
6

ti
m

e
 (

s
)

number of particles

O(N)

exaFMM
PGAS-FMM

Figure 5.7: Low accuracy (p = 3, ε = 10−2) comparison between PGAS-FMM and exaFMM
on Core i7-2600 (one thread): scaling with number of particles.

We now focus on the execution time of PGAS-FMM, and consider the major
components of the algorithm separately. Table 5.2 shows the breakdown of single-
threaded computation time between the major components: tree construction, far-
field evaluation (upward, multipole-to-local transformations and downward pass)
and near-field evaluation.

The overall scaling is roughly linear in the number of particles, as expected. Tree
construction accounts for approximately 4-10% of the total time; this is somewhat
slower than what might be expected for a single thread, in part because the code

3Timings for high accuracy calculations will be reported later in this section.

§5.3 Fast Multipole Method 99

Table 5.2: Component timings in seconds of PGAS-FMM on Core i7-2600 (one thread) for
varying numbers of particles and accuracies (low: p = 3, ε = 10−2, high p = 6, ε = 10−4).

n = 105, Dmax = 4 n = 106, Dmax = 5

component low accuracy high accuracy low accuracy high accuracy

tree construction 0.038 0.038 0.34 0.35

near 0.714 0.718 9.37 9.28

upward 0.118 0.150 1.15 1.44

far M2L 0.286 0.775 2.75 7.31

downward 0.052 0.097 0.52 0.96

total 1.21 1.78 14.13 19.35

assumes that the particles are distributed between places and require load balancing
and redistribution before evaluation can occur. For low accuracy the near-field com-
putation time is dominant representing 58% of the total for the “small” 105 particles
simulation and 66% for the “large” 106 particles simulation. However, as the accuracy
is increased the near and far field computation times become roughly equal.

As X10 is a new language with less well-understood performance characteristics
than traditional languages such as C++ or Fortran, it is reasonable to ask how good
the absolute performance of PGAS-FMM is, and what fraction of the observed perfor-
mance difference between PGAS-FMM and exaFMM is due to algorithmic differences
compared to inefficiencies in the language implementation. These issues are con-
sidered in detail in the following subsection for the near- and far-field components
separately.

Near-Field Calculation

The U-list (near-field) interactions for each box are computed in a loop over neighbor-
ing boxes. All particle data for neighboring boxes have previously been retrieved and
stored in Morton order, i.e. in a dense memory layout; this promotes better locality
and cache re-use. For each box, the maximum number of boxes in the U-list is 27.
There is a substantial overlap between U-lists for different boxes that are nearby in
Morton order. Hence there is good temporal locality in the use of particle data in the
U-list calculation. Given an average number of ions q = 50 per lowest level box, the
working set size is approximately 42 KiB, which easily fits within the L2 cache on all
the computing systems we used.

As previously discussed in §5.1.2, evaluation of direct force and potential takes
approximately 40 cycles per near-field interaction, which is the same as an equivalent
C++ code. Near-field evaluations in exaFMM are significantly faster due to the use
of AVX and SSE approximate reciprocal square root operations.

100 Molecular Dynamics Simulation Using X10

Far-Field Calculation

The major algorithmic consideration in the far-field calculation is the type of expan-
sions and transformation operators used. By far the largest contribution to calcula-
tion time is the multipole-to-local (M2L) transformation, which converts a multipole
expansion for a well separated box to a local expansion for a target box. The M2L op-
erations on the Cartesian Taylor expansions used in exaFMM scale as O(p6), whereas
the rotation-based operators in PGAS-FMM scale as O(p3) but with a larger prefactor.
It is therefore expected that PGAS-FMM would exhibit relatively better performance
for higher-accuracy calculations with greater p.

Yokota [2013] (fig. 1) compared the performance of M2L operator using hand-
optimized Cartesian Taylor expansions and transformations with a less carefully
optimized rotation-based M2L operator over spherical harmonic expansions. The
average time for a single M2L transformation was measured for a complete FMM
calculation for n = 106 particles. Yokota found that transformations using Cartesian
Taylor expansions were faster for p < 12, whereas spherical harmonics were faster
for greater values of p.

We replicated this experiment using the spherical harmonic expansions and op-
erators implemented in PGAS-FMM, and report the results in figure 5.8. Whereas
Yokota found a crossover point at p ≈ 12 (which corresponds to a RMS force error
ε ≈ 10−7), we find that the crossover occurs much earlier at p = 7 (which corresponds
to a RMS force error ε ≈ 10−5).

10
-2

10
-1

10
0

10
1

 2 3 4 5 6 7 8 9 10

T
im

e
 p

e
r

c
e
ll

p
a
ir
 (

µ
s
)

Order of expansion p

exaFMM

 PGAS-FMM

Figure 5.8: Time for M2L transformation on Core i7-2600 (8 threads) for different orders of
expansion p (n = 106)

Figure 5.9 shows computation time for the same systems used in figure 5.7, this

§5.3 Fast Multipole Method 101

time with a slightly higher accuracy (RMS force error ε ≈ 1× 10−3). The exaFMM
C++ code is now only 1.5–4.1 times faster than our X10 code (p = 6). The difference
in performance suggests that algorithmic differences between the two codes are likely
to be more important for far-field evaluation than differences due to the use of X10
versus pure C++.

10
-2

10
-1

10
0

10
1

10
4

10
5

10
6

ti
m

e
 (

s
)

number of particles

O(N)

exaFMM
PGAS-FMM

Figure 5.9: Higher accuracy (p = 6, ε = 10−4) comparison between PGAS-FMM and exaFMM
on Core i7-2600 (one thread): scaling with number of particles.

Having compared the overall performance of our code to that of a highly-optimized
FMM implementation, we now consider its floating-point performance with respect
to theoretical peak FLOP/s on our desktop system. Our M2L operations average
3782 cycles and 3938 FP instructions with p = 6 (force error ≤ 10−4) on an Intel Core
i7-2600. This is a FP intensity of 1.04 FLOP/cycle, which is 26% of peak FLOP/cycle.
Our code achieves between 14% and 22% of peak FLOP/s for the entire FMM exclud-
ing the near-field calculation. This might be improved through appropriate use of
SSE and/or AVX instructions.4

5.3.2.2 Overhead of Activity Management

Having considered the factors affecting sequential performance of PGAS-FMM, we
next measured the overhead due to dividing the computation for parallel execution.
Our code divides the work to create a single activity per box5 to take advantage of

4Inspection of the generated assembler indicates that the compiler does not generate these instruc-
tions for key loops in the M2L kernel.

5Actually, three activities per box: one each for the upwards pass, downwards pass and multipole-
to-local transformations.

102 Molecular Dynamics Simulation Using X10

dynamic load-balancing by X10’s work stealing runtime. As each activity is long-
lived (>100k cycles), the overhead of activity management and load balancing is
expected to be small. To assess the overhead of activity management we removed all
async statements from the upward, M2L and downward components of the code,
effectively converting it into a sequential program with a single activity. Both single-
activity and parallel versions of the code were run on a single thread to compare
component timings. Table 5.3 shows the difference in time between single-activity
and parallel versions of each component, and the proportional slowdown due to
activity management overhead. The slowdown is less than 4% for each component
suggesting that the sequential overhead due to activity management is low.

Table 5.3: Slowdown due to X10 activity management overhead for PGAS-FMM on Core
i7-2600 (one thread) for low accuracy calculation (n = 106, p = 3, ε = 10−2).

time (s)
component single-activity parallel slowdown

upward 1.12 1.16 1.03

M2L 2.65 2.67 1.009

downward 9.79 9.81 1.002

5.3.2.3 Shared-Memory Scaling

We next measured the reduction in total computation time and component times
for PGAS-FMM when running on different numbers of threads of a single-shared
memory node. Figure 5.10(a) shows multithreaded scaling on a single quad-core
Sandy Bridge node of the different components of PGAS-FMM for the largest system
used in §5.3.2.1 (106 particles) with p = 6 (RMS force error ≈ 1× 10−3). Figure 5.10(b)
presents the same data in terms of parallel efficiency, showing the total thread time
(elapsed time × number of threads).

The total time reduces from 19.2 s on a single thread to 5.07 s on 8 threads. On
a single thread, the largest components are the ‘downward pass’, which includes
near-field interactions, and the multipole-to-local transformations for the V-list. For
these components, figure 5.10(a) shows a significant reduction in computation time
from 1 to 4 threads, while figure 5.10(b) shows a slight increase in total thread time
reflecting imperfect load balancing due to differences in task size. There is a further
reduction in computation time for 8 threads as hyper-threading is used to schedule
eight threads on four physical cores. The latter does however increase the total thread
time as threads compete for resources. Further experiments (not shown) found no
additional performance improvement above 8 threads.

The locality of work stealing applied to activities over the FMM tree can be
visualized using the approach that was presented in §3.1.2. Figure 5.11 shows the
mapping from activity to worker thread for a slice through the simulation space at

§5.3 Fast Multipole Method 103

 1

 10

 1 2 4 8

ti
m

e
 (

s
)

number of threads

linear scaling
total

downward
m2l

upward
tree

(a) Scaling

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 8

to
ta

l
th

re
a

d
 t

im
e

 (
s
)

number of threads

downward
m2l

upward
tree

(b) Efficiency

Figure 5.10: Multithreaded component scaling and efficiency of PGAS-FMM on Core i7-2600
(1-8 threads, n = 106, p = 6, ε = 10−4).

the lowest level of a uniform tree of Dmax = 4 levels. There is one activity for each
box, thus this slice represents 4096 activities. Each worker processes a few contiguous
regions of boxes, with the minimum extent of a region in any dimension being 4.
Therefore, although work stealing permits fine-grained load balancing of activities
between workers, in this application the overall effect is a coarse-grained division
of the simulation space, with good locality between the activities processed by each
worker.

5.3.2.4 Distributed-Memory Scaling

To evaluate distributed scaling we measured the time for PGAS-FMM force calculation
for 1,000,000 particles using different numbers of nodes of Raijin. The maximum tree
depth for this problem size is 5 (32,768 boxes at the lowest level), and p = 6 terms
were used in expansions for a force error of approximately 10−4. Strong scaling
experiments were also conducted on the Watson 2Q Blue Gene/Q system. Blue
Gene/Q represents a different system balance to the Raijin Sandy Bridge/IB cluster,
with a greater relative performance of the communication subsystem compared to
floating-point computation [Haring et al., 2012]. It also has substantially greater levels
of parallelism; a single BG/Q compute node may execute up to 64 hardware threads
(on 16 4-way SMP cores).

Figure 5.12 shows the strong scaling measured on Raijin.
Total computation time is shown along with the time for each of the major com-

ponents for 1 to 128 places. Total time reduces from 3.6 s on a single place (8 cores)

104 Molecular Dynamics Simulation Using X10

 0

 16

 32

 48

 64

 0 16 32 48 64

b
o

x
 z

 i
n

d
e
x

box y index

Figure 5.11: Locality of activity-worker mapping for FMM force evaluation on Core i7-2600
(leaf boxes at x = 3, n = 106, Dmax = 6, X10_NTHREADS=4). Activities executed by each
worker thread are shown in a different color.

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128

ti
m

e
 (

s
)

number of places

linear scaling
total

downward
m2l

upward
prefetch

tree

Figure 5.12: Strong scaling of FMM force calculation on Raijin (8 cores per place, n = 106,
p = 6).

§5.3 Fast Multipole Method 105

to 0.19 s on 128 places (1024 cores). Parallel efficiency reduces gradually due to poor
scaling of the upward pass, which includes the time to send multipole expansions to
neighboring places. The upward pass includes communication and synchronization
between each place and its neighbors. Figure 5.12 shows an additional component,
which is the time to prefetch particle data required for near-field interactions at each
place. This is insignificant below 32 places but increases to become the second-largest
component of the runtime on 128 places.

Figure 5.13 shows the strong scaling measured on Watson 2Q.

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512

ti
m

e
 (

s
)

number of places

linear scaling
total

downward
m2l

upward
prefetch

tree

Figure 5.13: Strong scaling of FMM force calculation on Watson 2Q (16 cores per place,
n = 106, p = 6).

For one place (16 cores) Watson 2Q takes 19.5 s in total, which reduces to 0.28 s on
512 places (8192 cores). The time for a single place (16 cores) is about 4.8 times as
long as a single place on Raijin (8 cores). Per core, Watson is therefore more than 9
times slower than Raijin. The computation overall scales better on Watson 2Q than it
does on Raijin, which reflects the relatively higher performance of communications
over the torus network, which makes communication-intensive components like the
upward pass relatively cheaper on BG/Q. Also, key collective operations used in tree
construction and the upward pass (see §5.3.1.3) are hardware accelerated.

As previously mentioned, an attractive feature of FMM in comparison to particle-
mesh methods is that it uses localized as opposed to all-to-all communication pat-
terns. Figure 5.14(a) is a heatmap of the MPI pairwise communications with 64
processes on Raijin for a single FMM force calculation, profiled using IPM. Darker
areas on the map indicate larger volumes of communications between processes. The
heatmap demonstrates locality in the communication pattern, with large amounts of
data exchanged between neighboring processes and very little between more distant

106 Molecular Dynamics Simulation Using X10

processes. A noticeable feature of the communication topology is the two strong
off-diagonal lines. These represent global tree-structured collective communications
(broadcast and all-reduce), which are used in tree construction.6 Figure 5.14(b) shows
the communication topology for tree construction alone. Comparing the two fig-
ures, it is apparent that the communication pattern of FMM evaluation excluding
tree construction is fractal-structured and mostly on-diagonal (between neighboring
processes).

(a) Complete FMM force calculation (b) Tree construction only

Figure 5.14: Map of MPI communications between 64 processes for FMM force calculation
on Raijin.

5.4 Simulating Ion Interactions in Mass Spectrometry

As a practical application of the FMM code developed in the previous section, the
code was used to evaluate ion interactions in mass spectrometry. We aim to simulate
the behavior of a packet of ions in Fourier transform ion cyclotron resonance mass
spectrometry (FTICR-MS) (see §2.6.4) over an experimentally meaningful timescale.
A typical packet contains 104–106 ions in circular motion with cycle times on the order
of microseconds. Simulation of these ions involves evaluating ion-ion interactions, the
influence of electric and magnetic fields on each ion, and integration of equations of
motions. As ion density is very low7, in our simulation the ions are modeled as point
charges, interacting with each other only through non-bonded electrostatic forces.

For adequate frequency resolution, a measurement period of tens of milliseconds
is required. However, to avoid significant error in integrating the ion trajectories
requires a simulation timestep of tens of nanoseconds [Birdsall and Langdon, 1985;

6The MPI collective functions MPI_Bcast and MPI_Allreduce exhibit similar communication
patterns.

7on the order of hundreds to thousands of ions per cubic millimeter

§5.4 Simulating Ion Interactions in Mass Spectrometry 107

Patacchini and Hutchinson, 2009]. Thus a full simulation requires around a million
timesteps. The Penning trap which contains the ions is cubic in shape, which is
highly convenient for simulation in an octree of cubic boxes. As ions can hit the wall
of the trap and effectively disappear, periodic boundary conditions should not be
imposed if the simulation is to accurately reproduce experiment. Instead, particles
that venture outside of the domain defined by the octree should simply be removed
from the simulation. The non-periodic nature of the experimental environment plus
the dominance of the computation time by evaluation of long-range electrostatic
interactions makes FMM the ideal method to use for this problem.

5.4.1 Implementation

Ions are confined radially by a magnetic field B and an ideal quadrupolar electric
trapping potential of VT. The electrostatic potential and field near the center of the
trap are approximated as

ΦT(x, y, z) = VT(γ
′ − α′

2l2 (x2 + y2 − 2z2)) (5.5)

E = −∇ΦT(x, y, z) =
α′

l2 (−xi− yj + 2zk), (5.6)

where γ′ = 1/3 and α′ = 2.77373 are geometric factors for the cubic trap, and l is the
edge length [Guan and Marshall, 1995]. The force experienced by an ion in the trap
due to the confining fields is

F = q(E + v× B). (5.7)

Charges and mass are simulated in atomic units, lengths in nm and time in ns.
The force on each ion due to the confining fields is added to that due to Coulomb
repulsion by other ions, calculated using the FMM code described in §5.3.

5.4.1.1 Integration Scheme

Particle positions and velocities are updated using the Boris integrator [Boris, 1970]
as formulated by Birdsall and Langdon [1985]. This is a modified leapfrog scheme
in which positions are calculated at times ..., n− 1, n, n + 1, ... and velocities at times
..., n−1/2, n+1/2, ... as follows:

v− = vn−1/2 +
qE
m

∆t
2

(5.8)

v′ = v− + v− × t t =
qB
m

∆t
2

(5.9)

v+ = v− + v′ × s s =
2t

1 + t2 (5.10)

vn+1/2 = v+ +
qE
m

∆t
2

(5.11)

108 Molecular Dynamics Simulation Using X10

5.4.1.2 Ion Motion

The cyclotron angular velocity ωc is predicted by ωc =
qB
m , with cyclotron frequency in

S.I. units νc =
ωc
2Π [Guan and Marshall, 1995]. To achieve 1% phase error in simulated

cyclotron frequency requires ωc∆t . 0.3 [Birdsall and Langdon, 1985; Patacchini and
Hutchinson, 2009].

Ions are excited to a uniform radius r by an alternating electric field. In the
simulation, initial particle positions are assigned in a cylinder centred at r using
uniform distributions over radius, angle and height. The magnitude of ion velocity
in the xy plane (in S.I. units) is predicted by

vxy =
qBr
m

. (5.12)

Initial velocities are generated by adding vxy to a Maxwell distribution at 300 K.
The electric field gives rise to a magnetron motion of a lower frequency ωz. In

a quadrupolar trapping potential of VT, the modified cyclotron frequency ω+ is
predicted by

ω+ =
ωc

2
+

√
ω2

c
4
− ω2

z
2

ωz =

√
2αqVT

ml2 (5.13)

In experiment, the modified cyclotron frequency may be measured by peaks in the
Fourier transform of the induced current time signal.

5.4.1.3 Induced Current

In experiment, the current is measured between detector plates on opposite walls of
the cube parallel to the magnetic field.

In the simulation, a current I is induced by the movement of the ‘image’ Eimage(r)
associated with each ion, that is, the difference in the electric field generated by the
ion at each of the two detector plates [Guan and Marshall, 1995].

I =
N

∑
i=1

qivi · Eimage(ri) (5.14)

Eimage(r) = −
β′

l
rj, (5.15)

where β′ = 0.72167 is a geometric factor for the cubic trap.

5.4.2 Evaluation

The purpose of developing this code was to determine whether it is possible to
perform meaningful molecular dynamics simulations using the X10 FMM code devel-
oped in the previous sections. To this end we conducted initial scaling experiments
for a realistic simulation of FTICR-MS over short time scales (102–105 timesteps).

§5.4 Simulating Ion Interactions in Mass Spectrometry 109

The Penning trap is a 5 mm cube with a 4.7 T magnetic field and a 1 V trap-
ping field. Initially there is a single ion cylindrical ion cloud composed of two
species of similar mass/charge ratio: glutamine (m/q = 147.07698) and lysine
(m/q = 147.11336). The simulation consists of timesteps of length 25 ns, using FMM
evaluation of electrostatic interactions with p = 8.

We ran simulations with varying numbers of particles for ion clouds of amino
acids of similar mass/charge ratios. Table 5.4 shows strong scaling of computation
time per timestep, FMM evaluation and tree construction times for varying number
of particles and maximum tree depth.

Table 5.4: Amino acids in ANU mass spectrometer: timings for one place (8 cores) to 64
places (512 cores) on Raijin, (p = 8).

time per cycle (s)
n = 104, Dmax = 5 n = 105, Dmax = 6

places total evaluate tree total evaluate tree

1 0.144 0.136 0.0071 2.62 2.56 0.052

2 0.0916 0.0850 0.0060 1.46 1.38 0.072

4 0.0762 0.0691 0.0067 1.08 0.990 0.088

8 0.0727 0.0629 0.0095 0.950 0.851 0.089

16 0.0671 0.0550 0.012 0.769 0.679 0.088

32 0.0726 0.0554 0.017 0.634 0.549 0.085

64 0.0758 0.0590 0.019 0.573 0.479 0.093

Total time reduces significantly going from 1 to 4 places for both small (n = 104)
and large (n = 105) problem sizes, due to a substantial reduction in evaluation time.
Tree construction time does not reduce, which contrasts with the good strong scaling
of tree construction previously observed in §5.3.2.4; the major difference here is the
highly non-uniform distribution of the particles, which requires a deeper tree and
many more empty boxes, which in our implementation generates a greater volume
of communication between places.

The ion frequencies measured in our simulation differ from the ‘ideal’ frequencies
predicted by the modified cyclotron equation (5.13), which is to be expected as the
cyclotron equation does not take ion interactions into account. Table 5.5 shows
the predicted and measured frequencies from the simulation of a packet of 5000
glutamine and 5000 lysine ions.

Finally, as a qualitative evaluation, we consider the high-level structure of the ion
clouds after a number of revolutions. Figure 5.15 shows the ion cloud evolution in
the first 2.5 ms for a simulation of 10,000 ions. After 2.5 ms, the clouds have separated
and are beginning to form a comet shape. This shape has been observed previously
in other simulations [Nikolaev et al., 2007] and attributed to ion–ion interactions.

110 Molecular Dynamics Simulation Using X10

Table 5.5: Amino acids in ANU mass spectrometer: predicted and measured frequencies

Simulation parameters Frequency (Hz)
species charge mass r (mm) v0 (m s−1) Predicted ν+ Measured ν′+

glutamine 1 147.07698 3.0 9.25× 103 489,779 489,540

lysine 1 147.11336 3.0 9.25× 103 489,658 489,407

-4

-2

 0

 2

 4

-4 -2 0 2 4

(a) time 0: X-Y projection

-4

-2

 0

 2

 4

-4 -2 0 2 4

(b) time 0: X-Z projection

-4

-2

 0

 2

 4

-4 -2 0 2 4

(c) time 2.5ms: X-Y projection

-4

-2

 0

 2

 4

-4 -2 0 2 4

(d) time 2.5ms: X-Z projection

Figure 5.15: FTICR-MS ion cloud evolution in first 2.5 ms of simulation: packet of 5000 lysine
and 5000 glutamine ions.

§5.5 Summary 111

5.5 Summary

This chapter described the use of the X10 programming language to implement
molecular dynamics applications. Three different algorithms were considered for
the calculation of long-range electrostatic interactions, which vary in computational
complexity and locality of interaction. Of the algorithms considered, the fast mul-
tipole method exhibited superior scalability due to the highly localized nature of
interactions in this method. The X10 programming model supported the expression
of the distributed tree structure for the FMM and the creation and synchronization of
distributed parallel activities operating on nodes within the tree. Work stealing was
effective in balancing the load between cores within a place, however load balancing
between places was controlled by the programmer through domain decomposition of
distributed data structures. The FMM was applied to the simulation of interactions
between charged particles in a mass spectrometer. Load imbalance between places
limited the scalability of this simulation.

112 Molecular Dynamics Simulation Using X10

Chapter 6

Conclusion

This work reported in this thesis was part of an ongoing co-design effort involving
researchers at IBM and ANU, aimed at improving the expressiveness and perfor-
mance of the X10 language through its use to develop two significant computational
chemistry application codes. These were the first significant X10 applications created
outside of the X10 development team, and are representative of a broad range of
scientific and engineering applications, and have been complemented by other recent
application development elsewhere. We proposed and implemented improvements to
the X10 language and runtime libraries for managing and visualizing the data locality
of parallel tasks, communication using active messages, and efficient implementation
of distributed arrays. These improvements were demonstrated in the context of the
application examples.

The performance results presented in this thesis show that X10 programs can
achieve performance comparable to established programming languages when run
on a single core. More importantly, X10 programs can achieve high parallel effi-
ciency on a multithreaded architecture for parallel tasks that are created in a divide-
and-conquer style and make appropriate use of worker-local data. For distributed
memory architectures, X10 supports the use of active messages to construct local,
asynchronous communication patterns which exhibit superior scaling compared to
global, synchronous patterns.

The scalability of the application codes presented in this thesis was limited by
the lack of efficient collective communication mechanisms. The benefit of such mech-
anisms has long been established in MPI, and their incorporation into the APGAS
model will be necessary to achieve high scalability for many scientific codes. While
this thesis did not provide a comprehensive solution to this problem, the concept of
collective active messages presented in chapter 3 may provide a framework for such a
solution.

Increasing programmer productivity was a primary design goal of X10. The
application codes presented in this thesis are generally shorter and, I believe, easier
to understand than equivalent codes using the fragmented model currently dominant

113

114 Conclusion

in HPC1. While simplicity and clarity of code are important factors in productivity,
equally important are the tools available to developers. Good compilers, debuggers
and profilers can contribute as much to developer productivity as the language itself.
For X10 to achieve its productivity goal will require significant further investment in
tooling.

X10 was originally conceived in 2003, in the early days of multicore computing.
In terms of high-performance computing, systems with multiple cores per socket
only entered the TOP500 list for the first time in June 2002 and single-core systems
made up the majority of the list until June 2007 [TOP500]. The decision to exploit
multicore parallelism through a work-stealing runtime has been proven to be effective,
as demonstrated by the performance results on 8- and 16-core systems presented in
this thesis. Whereas a decade ago the landscape of HPC was dominated by a single
basic model – the cluster of commodity processors – the landscape today is highly
varied. The fastest computers now manifest architectural heterogeneity through
the use of accelerators such as GPUs and Intel’s Xeon Phi; architectures featuring
heterogeneous cores within a single chip will also play an important role in the future.
Applying X10’s APGAS model to such varied systems is a challenging and important
area for future research.

Data movement is a critical factor in both performance and energy use in modern
computing, which means that data locality must be a primary concern for program-
mers. While the APGAS model explicitly represents data locality, X10’s places are too
simple to adequately represent the deep memory hierarchies which are a feature of
many HPC architectures. The task visualization approach presented in chapter 3 of
this thesis could be viewed as a method to discover locality information that is hidden
from the programmer in the simple model of places. A more nuanced representation
of locality such as hierarchical place trees [Yan et al., 2010] or the hierarchical locales
introduced in version 1.8 of the Chapel language [Chamberlain et al., 2013] would
better support programmers in controlling data movement.

The success or failure of a programming language is ultimately determined by its
use to develop effective computing applications, which is affected by a wide range
of issues. The qualities of expressiveness and performance considered in this thesis
are only two such issues; others include vendor strategies, user communities, the
availability of high-quality code libraries, programming and analysis tools and the
existence of highly-visible flagship applications. The contributions in this thesis have
been presented in the context of a single programming language, X10, and risk being
lost if that particular language fails to have widespread impact. To mitigate against
this risk, it will be necessary to show how these contributions could be applied to
other languages.

An area of research not touched on in this thesis is the use of domain-specific
languages, which allow the programmer to express the problem directly in terms
of concepts from the scientific domain in question. Automated methods are then
used to generate efficient parallel code from this high-level description. For exam-

1sequential language + OpenMP + MPI

§6.1 Future Work 115

ple, in quantum chemistry, the Tensor Contraction Engine [Baumgartner et al., 2005]
supports the generation of efficient array computations from high-level tensor expres-
sions (which are generalized matrix multiplications). Domain-specific languages may
be preferable to general-purpose languages in both expressiveness and performance,
for particular applications. In this respect, X10 could be used as a framework for
the implementation of domain-specific languages, rather than through direct use by
application programmers.

6.1 Future Work

The implementation of the X10RT communication library on top of MPI ensures that
X10 programs are portable to a wide range of distributed computer architectures.
X10 has a very general model of active messages which does not map well to one-
sided communications; therefore X10 messages have been implemented using two-
sided MPI communications. Certain classes of active messages, for example, remote
memory accesses and the collective active messages finish / ateach, are suitable
for implementation on top of the new MPI-3 standard for one-sided communications,
which would provide better application performance.

Local-synchronization algorithms, such as the ghost region update algorithm
presented in chapter 3 and the tree traversal used in the FMM in chapter 5, would
benefit from efficient implementation of atomic blocks. In general, atomic blocks
are a natural fit to transactional memory; some experimental work has already been
done towards an implementation using software transactional memory. Hardware
support for transactional memory in Blue Gene/Q [Haring et al., 2012] and Intel’s
Haswell architecture [Intel, 2013a] could also be used to improve the efficiency of
atomic blocks.

The exploitation of locality is the key insight in both linear-scaling methods and
the APGAS programming model; their combination represents an attractive opportu-
nity for future co-design efforts.

116 Conclusion

Appendices

117

Appendix A

Evaluation Platforms

Evaluation was performed on five different parallel machines:

• a typical desktop machine, containing a quad-core 3.4 GHz Sandy Bridge Core
i7-2600 with 8 GB DDR3-1333 memory;

• a loosely coupled cluster machine: the Vayu Oracle/Sun Constellation cluster
installed at the NCI National Facility at the Australian National University. Each
node of Vayu is a Sun X6275 blade, containing two quad-core 2.93 GHz Intel
Nehalem CPUs, 24 GB DDR3-1333 memory and on-board QDR InfiniBand;

• a highly-multithreaded cluster machine: the Raijin Fujitsu Primergy cluster
installed at the NCI National Facility at the Australian National University.
Each node of Raijin contains two eight-core 2.6 GHz Intel Xeon Sandy Bridge
CPUs, 32 GB DDR3-1600 memory and on-board FDR InfiniBand;

• a tightly integrated system with a custom interconnect: the Watson 4P Blue
Gene/P system at IBM Watson Research Center. Each Blue Gene/P compute
node contains 4 PowerPC 450 compute cores running at 850 MHz with 8 MB of
shared L3 cache and 2 GB of DDR-2 memory.

• a highly-multithreaded, tightly integrated system with a custom interconnect:
the Watson 2Q Blue Gene/Q system at IBM Watson Research Center. Each Blue
Gene/Q compute node contains 16 PowerPC A2 1.6 GHz compute cores (with
an additional core for operating system services) with 32 MB of shared L2 cache
and 16 GB DDR-3 memory [Haring et al., 2012].

For all reported results, the Native (C++ backend) version of X10 2.4 was used.
One multithreaded X10 place was created per socket, with X10_NTHREADS (the num-
ber of worker threads) equal to the number of cores. Thus X10_NTHREADS=4 was
used for the quad-core CPUs of Vayu, X10_NTHREADS=8 was used for the eight-core
CPUs of Raijin, and X10_NTHREADS=16 was used for the 16-core CPUs of Watson 2Q.
On Blue Gene/P however it was not possible to run using multiple threads due to
thread creation restrictions on that platform. Therefore four single-threaded places
were created for each quad-core CPU of Watson 4P.

119

120 Evaluation Platforms

On Vayu and Raijin, Intel MPI verson 4.1.1.036 was used with the options -binding
domain=socket -perhost 2 to run one process per quad-core or eight-core socket.

List of Abbreviations

ARMCI the Aggregate Remote Memory Copy Interface

APGAS asynchronous partitioned global address space

API application programming interface

AVX Intel Advanced Vector Extensions x86 instruction set

BLAS Basic Linear Algebra Subroutines

CAF Coarray Fortran

CUDA Compute Unified Device Architecture - a programming model for
heterogeneous devices from NVIDIA Corporation

DARPA the Defence Advanced Research Projects Agency - the United States agency
responsible for funding research into defence technologies

DGEMM double-precision general matrix multiply - a BLAS routine to multiply
dense matrices

DSYRK double-precision symmetric rank-K update - a BLAS routine to multiply a
symmetric matrix by its own transpose

FFT fast Fourier transform

FMM fast multipole method

FLOP floating point operation

FTICR-MS Fourier transform ion cyclotron resonance mass spectrometry

GML X10 Global Matrix Library - a distributed linear algebra library written in
X10

GPU graphics processing unit

HPC high performance computing

HPCS High Productivity Computing Systems - a DARPA funded research
program running from 2002 to 2012

121

122 Evaluation Platforms

JVM Java virtual machine

LAPACK Linear Algebra PACKage

MD molecular dynamics

MPI Message Passing Interface - a standard application programming interface
for message passing

OpenCL Open Computing Language - an open-standard programming model for
heterogeneous devices supported by multiple vendors

OpenMP Open Multi-Processing - an open-standard shared memory programming
model

PAMI the Parallel Active Message Interface - a proprietary communications API
developed by IBM for use on high-performance interconnects

PGAS partitioned global address space

PME particle mesh Ewald method

Pthreads the Posix Threads standard

RO resolution of the Coulomb operator

RDMA remote direct memory access

SCF self-consistent field method

SIMD single instruction, multiple data

SPMD single program, multiple data

SSE Streaming SIMD Extensions x86 instruction set

TBB Intel Threading Building Blocks

UPC Unified Parallel C

Bibliography

Acar, U. A.; Blelloch, G. E.; and Blumofe, R. D., 2000. The data locality of work
stealing. In Proceedings of the 12th annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA ’00), SPAA ’00, 1–12. ACM, New York, NY, USA. doi:
10.1145/341800.341801. (cited on page 44)

Allen, E.; Chase, D.; Hallett, J.; Luchangco, V.; Maessen, J.-W.; Ryu, S.; Guy, L.
S. J.; and Tobin-Hochstadt, S., 2008. The Fortress language specification. Technical
report, Sun Microsystems. http://research.sun.com/projects/plrg/fortress.pdf. (cited on
pages 22 and 23)

Anderson, E.; Bai, Z.; Bischof, C.; Demmel, J.; Dongarra, J.; Du Croz, J.; Green-
baum, A.; Hammarling, S.; McKenney, A.; and Ostrouchov, S., 1995. LAPACK
users’ guide, release 2.0. Technical report. (cited on pages 20 and 37)

ANUChem. The ANUChem collection of computational chemistry codes. http://cs.
anu.edu.au/~Josh.Milthorpe/anuchem.html. (cited on pages 62 and 83)

Asadchev, A. and Gordon, M. S., 2012. New multithreaded hybrid CPU/GPU
approach to Hartree–Fock. Journal of Chemical Theory and Computation, 8, 11 (2012),
4166–4176. doi:10.1021/ct300526w. (cited on page 64)

Asanovic, K.; Bodik, R.; Catanzaro, B.; Gebis, J.; Husbands, P.; Keutzer, K.; Patter-
son, D.; Plishker, W.; Shalf, J.; Williams, S.; and Yelick, A., 2006. The landscape
of parallel computing research: A view from Berkeley. Technical report, Univer-
sity of Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html.
(cited on pages 35 and 36)

Ayguade, E.; Copty, N.; Duran, A.; Hoeflinger, J.; Lin, Y.; Massaioli, F.; Teruel,
X.; Unnikrishnan, P.; and Zhang, G., 2009. The design of OpenMP tasks. IEEE
Transactions on Parallel and Distributed Systems, 20, 3 (2009), 404–418. doi:10.1109/
TPDS.2008.105. (cited on page 11)

Balay, S.; Brown, J.; Buschelman, K.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.;
Knepley, M. G.; McInnes, L. C.; Smith, B. F.; and Zhang, H., 2011. PETSc users
manual. Technical Report ANL-95/11 - Revision 3.2, Argonne National Laboratory.
(cited on page 57)

123

http://dx.doi.org/10.1145/341800.341801
http://dx.doi.org/10.1145/341800.341801
http://research.sun.com/projects/plrg/fortress.pdf
http://cs.anu.edu.au/~Josh.Milthorpe/anuchem.html
http://cs.anu.edu.au/~Josh.Milthorpe/anuchem.html
http://dx.doi.org/10.1021/ct300526w
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://dx.doi.org/10.1109/TPDS.2008.105
http://dx.doi.org/10.1109/TPDS.2008.105

124 Bibliography

Barriuso, R. and Knies, A., 1994. SHMEM user’s guide for C. Technical report, Cray
Research Inc. (cited on page 9)

Baumgartner, G.; Auer, A.; Bernholdt, D. E.; Bibireata, A.; Choppella, V.; Co-
ciorva, D.; Gao, X.; Harrison, R. J.; Hirata, S.; Krishnamoorthy, S.; Krish-
nan, S.; Lam, C.-C.; Lu, Q.; Nooijen, M.; Pitzer, R. M.; Ramanujma, P. S.; and

Sibiryakov, A., 2005. Synthesis of high-performance parallel programs for a class
of ab initio quantum chemistry models. Proceedings of the IEEE, 93, 2 (February
2005). (cited on page 115)

Berendsen, H., 2007. Simulating the physical world. Cambridge University Press. ISBN
978-0-521-83527-5. (cited on pages 7 and 37)

Birdsall, C. and Langdon, A., 1985. Plasma Physics via Computer Simulation.
McGraw-Hill, New York. (cited on pages 106, 107, and 108)

Blackford, L.; Demmel, J.; Dongarra, J.; Duff, I.; Hammarling, S.; Henry, G.;
Heroux, M.; Kaufman, L.; Lumsdaine, A.; Petitet, A.; Pozo, R.; and Remington,
2002. An updated set of basic linear algebra subprograms (BLAS). ACM Transactions
on Mathematical Software, 28, 2 (2002), 135–151. doi:10.1145/567806.567807. (cited
on pages 20 and 37)

Blackford, L. S.; Choi, J.; Cleary, A.; Demmel, J.; Dhillon, I.; Dongarra, J.;
Hammarling, S.; Henry, G.; Petitet, A.; Stanley, K.; Walker, D.; and Whaley,
R. C., 1996. ScaLAPACK: a portable linear algebra library for distributed memory
computers - design issues and performance. In Proceedings of the 1996 ACM/IEEE
Conference on Supercomputing, 5–5. doi:10.1109/SUPERC.1996.183513. (cited on pages
36 and 37)

Blumofe, R. and Leiserson, C., 1999. Scheduling multithreaded computations by
work stealing. Journal of the ACM (JACM), 46 (Sep 1999). doi:10.1145/324133.324234.
(cited on page 12)

Bonachea, D., 2002. GASNet specification, v1. Technical Report UCB/CSD-02-1207,
University of California, Berkeley. (cited on page 9)

Bonachea, D. and Duell, J., 2004. Problems with using MPI 1.1 and 2.0 as
compilation targets for parallel language implementations. International Jour-
nal of High Performance Computing and Networking, 1, 1-3 (Aug. 2004), 91–99.
doi:10.1504/IJHPCN.2004.007569. (cited on page 8)

Boris, J., 1970. Relativistic plasma simulation-optimization of a hybrid code. In
Proceedings of the Fourth Conference on Numerical Simulation of Plasmas, 3–67. (cited
on page 107)

Boyd, J. P., 2001. Chebyshev and Fourier spectral methods. Dover Publications. ISBN
0-486-41183-4. (cited on page 38)

http://dx.doi.org/10.1145/567806.567807
http://dx.doi.org/10.1109/SUPERC.1996.183513
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1504/IJHPCN.2004.007569

Bibliography 125

Browne, S.; Dongarra, J.; Garner, N.; Ho, G.; and Mucci, P., 2000. A portable
programming interface for performance evaluation on modern processors. Inter-
national Journal of High Performance Computing Applications, 14, 3 (2000), 189–204.
doi:10.1177/109434200001400303. (cited on page 85)

Cavé, V.; Zhao, J.; Shirako, J.; and Sarkar, V., 2011. Habanero-Java: The new
adventures of old X10. In Proceedings of the 9th International Conference on Principles
and Practice of Programming in Java, PPPJ ’11, 51–61. ACM, New York, NY, USA.
doi:10.1145/2093157.2093165. (cited on page 21)

Chamberlain, B., 2001. The Design and Implementation of a Region-Based Parallel Lan-
guage. Ph.D. thesis, University of Washington. http://www.cs.washington.edu/research/
zpl/papers/data/Chamberlain01Design.pdf. (cited on page 18)

Chamberlain, B.; Callahan, D.; and Zima, H., 2007. Parallel programmability
and the Chapel language. International Journal of High Performance Computing Ap-
plications, 21 (2007), 291–312. doi:10.1177/1094342007078442. (cited on pages 8
and 21)

Chamberlain, B.; Choi, S.-E.; Deitz, S.; Iten, D.; and Litvinov, V., 2011. Authoring
user-defined domain maps in Chapel. In Proceedings of the Cray User Group. http:
//chapel.cray.com/publications/cug11-final.pdf. (cited on page 22)

Chamberlain, B. L.; Choi, S.-E.; Dumler, M.; Hildebrandt, T.; Iten, D.; Litvinov,
V.; and Titus, G., 2013. The State of the Chapel Union. In Proceedings of the Cray
User Group 2013. (cited on page 114)

Chandramowlishwaran, A.; Choi, J.; Madduri, K.; and Vuduc, R., 2012. Towards
a communication optimal fast multipole method and its implications at exascale. In
Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’12), 182–184. doi:10.1145/2312005.2312039. (cited on page 95)

Chandramowlishwaran, A.; Madduri, K.; and Vuduc, R., 2010. Diagnosis, tuning,
and redesign for multicore performance: A case study of the fast multipole method.
In Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC10). doi:10.1109/SC.2010.19. (cited
on page 85)

Chapel, 2014. Chapel language specification version 0.96. Technical report, Cray Inc.
(cited on page 21)

Charles, P.; Grothoff, C.; Saraswat, V.; Donawa, C.; Kielstra, A.; Ebcioğlu, K.;
von Praun, C.; and Sarkar, V., 2005. X10: an object-oriented approach to non-
uniform cluster computing. In Proceedings of the 20th ACM SIGPLAN conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2005),
519–538. doi:10.1145/1094811.1094852. (cited on pages 17 and 54)

http://dx.doi.org/10.1177/109434200001400303
http://dx.doi.org/10.1145/2093157.2093165
http://www.cs.washington.edu/research/zpl/papers/data/Chamberlain01Design.pdf
http://www.cs.washington.edu/research/zpl/papers/data/Chamberlain01Design.pdf
http://dx.doi.org/10.1177/1094342007078442
http://chapel.cray.com/publications/cug11-final.pdf
http://chapel.cray.com/publications/cug11-final.pdf
http://dx.doi.org/10.1145/2312005.2312039
http://dx.doi.org/10.1109/SC.2010.19
http://dx.doi.org/10.1145/1094811.1094852

126 Bibliography

Chavarría-Miranda, D.; Krishnamoorthy, S.; and Vishnu, A., 2012. Global fu-
tures: A multithreaded execution model for global arrays-based applications. In
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-
Grid 2012), 393 –401. doi:10.1109/CCGrid.2012.105. (cited on page 20)

Chen, D.; Eisley, N.; Heidelberger, P.; Senger, R.; Sugawara, Y.; Kumar, S.; Sala-
pura, V.; Satterfield, D.; Steinmacher-Burow, B.; and Parker, J., 2011. The
IBM Blue Gene/Q interconnection network and message unit. In 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis (SC),,
1–10. doi:10.1145/2063384.2063419. (cited on page 49)

Colella, P., 2004. Defining software requirements for scientific computing. presenta-
tion. (cited on page 35)

Colella, P.; Graves, D. T.; Ligocki, T. J.; Martin, D. F.; Modiano, D.; Serafini,
D. B.; and Van Straalen, B., 2012. Chombo Software Package for AMR Applications-
Design Document. 3.1. Applied Numerical Algorithms Group, Lawrence Berkeley
National Laboratory, Berkeley, CA. (cited on page 36)

Dachsel, H., 2006. Fast and accurate determination of the Wigner rotation matrices
in the fast multipole method. Journal of Chemical Physics, 124, 14 (Apr 2006), 144115.
doi:10.1063/1.2194548. (cited on page 92)

Dagum, L. and Menon, R., 1998. OpenMP: an industry standard API for shared-
memory programming. IEEE Computational Science and Engineering, 5 (1998), 46.
doi:10.1109/99.660313. (cited on page 11)

Darden, T.; York, D.; and Pedersen, L., 1993. Particle mesh Ewald: An N log(N)
method for ewald sums in large systems. Journal of Chemical Physics, 98, 12 (Jun.
1993), 10089–10092. doi:10.1063/1.464397. (cited on page 29)

Dayarathna, M.; Houngkaew, C.; Ogata, H.; and Suzumura, T., 2012a. Scalable
performance of ScaleGraph for large scale graph analysis. In Proceedings of the
19th International Conference on High Performance Computing (HiPC 2012), 1–9. doi:
10.1109/HiPC.2012.6507498. (cited on page 37)

Dayarathna, M.; Houngkaew, C.; and Suzumura, T., 2012b. Introducing Scale-
Graph: an X10 library for billion scale graph analytics. In Proceedings of the
2012 ACM SIGPLAN X10 Workshop, X10 ’12, 6:1–6:9. ACM, New York, NY, USA.
doi:10.1145/2246056.2246062. (cited on page 37)

Deserno, M. and Holm, C., 1998. How to mesh up Ewald sums. II. an accurate
error estimate for the particle–particle–particle–mesh algorithm. Journal of Chemical
Physics, 109, 18 (Nov. 1998), 7694–7701. doi:10.1063/1.477415. (cited on page 31)

DiStasio, R. A.; Jung, Y.; and Head-Gordon, M., 2005. A resolution-of-the-identity
implementation of the local triatomics-in-molecules model for second-order Møller–
Plesset perturbation theory with application to alanine tetrapeptide conformational

http://dx.doi.org/10.1109/CCGrid.2012.105
http://dx.doi.org/10.1145/2063384.2063419
http://dx.doi.org/10.1063/1.2194548
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1063/1.464397
http://dx.doi.org/10.1109/HiPC.2012.6507498
http://dx.doi.org/10.1109/HiPC.2012.6507498
http://dx.doi.org/10.1145/2246056.2246062
http://dx.doi.org/10.1063/1.477415

Bibliography 127

energies. Journal of Chemical Theory and Computation, 1, 5 (Sep. 2005), 862–876.
doi:10.1021/ct050126s. (cited on page 73)

Dombroski, J. P.; Taylor, S. W.; and Gill, P. M. W., 1996. KWIK: Coulomb energies
in O(N) work. Journal of Physical Chemistry, 100, 15 (Jan. 1996), 6272–6276. doi:
10.1021/jp952841b. (cited on page 27)

Dongarra, J.; Beckman, P.; Moore, T.; Aerts, P.; Aloisio, G.; Andre, J.-C.; Barkai,
D.; Berthou, J.-Y.; Boku, T.; Braunschweig, B.; Cappello, F.; Chapman, B.; Chi,
X.; Choudhary, A.; Dosanjh, S.; Dunning, T.; Fiore, S.; Geist, A.; Gropp, B.;
Harrison, R.; Hereld, M.; Heroux, M.; Hoisie, A.; Hotta, K.; Jin, Z.; Ishikawa,
Y.; Johnson, F.; Kale, S.; Kenway, R.; Keyes, D.; Kramer, B.; Labarta, J.; Lich-
newsky, A.; Lippert, T.; Lucas, B.; MacCabe, B.; Matsuoka, S.; Messina, P.;
Michielse, P.; Mohr, B.; Mueller, M.; Nagel, W.; Nakashima, H.; Papka, M.;
Reed, D.; Sato, M.; Seidel, E.; Shalf, J.; Skinner, D.; Snir, M.; Sterling, T.;
Stevens, R.; Streitz, F.; Sugar, B.; Sumimoto, S.; Tang, W.; Taylor, J.; Thakur,
R.; Trefethen, A.; Valero, M.; van der Steen, A.; Vetter, J.; Williams, P.; Wis-
niewski, R.; and Yelick, K., 2011. The international exascale software project
roadmap. International Journal of High Performance Computing Applications, 25, 1
(2011). doi:10.1177/1094342010391989. (cited on page 17)

Dongarra, J.; Graybill, R.; Harrod, W.; Lucas, R.; Lusk, E.; Luszczek, P.; Mcma-
hon, J.; Snavely, A.; Vetter, J.; Yelick, K.; Alam, S.; Campbell, R.; Carring-
ton, L.; Chen, T.-Y.; Khalili, O.; Meredith, J.; and Tikir, M., 2008. DARPA’s
HPCS program: History, models, tools, languages. In Advances in Computers
(Ed. Marvin V. Zelkowitz), vol. Volume 72, 1–100. Elsevier. ISBN 0065-2458.
doi:10.1016/S0065-2458(08)00001-6. (cited on pages 3 and 17)

Dyczmons, V., 1973. No N4-dependence in the calculation of large molecules.
Theoretica chimica acta, 28, 3 (Sep. 1973), 307–310. doi:10.1007/BF00533492. (cited on
page 26)

Eleftheriou, M.; Moreira, J.; Fitch, B.; and Germain, R., 2003. A volumetric
FFT for BlueGene/L. In Proceedings of the 10th International Conference on High
Performance Computing (HiPC 2003), 194–203. (cited on page 89)

Epperly, T.; Kumfert, G.; Dahlgren, T.; Ebner, D.; Leek, J.; Prantl, A.; and

Kohn, S., 2011. High-performance language interoperability for scientific comput-
ing through Babel. International Journal of High Performance Computing Applications,
(2011). doi:10.1177/1094342011414036. (cited on page 22)

Essmann, U.; Perera, L.; Berkowitz, M.; Darden, T.; Lee, H.; and Pedersen, L.,
1995. A smooth particle mesh Ewald method. Journal of Chemical Physics, 103 (1995),
8577–8593. doi:10.1063/1.470117. (cited on pages 29 and 87)

exaFMM. https://bitbucket.org/rioyokota/exafmm-dev. Accessed: Dec 12, 2012. (cited
on page 98)

http://dx.doi.org/10.1021/ct050126s
http://dx.doi.org/10.1021/jp952841b
http://dx.doi.org/10.1021/jp952841b
http://dx.doi.org/10.1177/1094342010391989
http://dx.doi.org/10.1016/S0065-2458(08)00001-6
http://dx.doi.org/10.1007/BF00533492
http://dx.doi.org/10.1177/1094342011414036
http://dx.doi.org/10.1063/1.470117
https://bitbucket.org/rioyokota/exafmm-dev

128 Bibliography

Faraj, A.; Kumar, S.; Smith, B.; Mamidala, A.; and Gunnels, J., 2009. MPI collective
communications on the Blue Gene/P supercomputer: Algorithms and optimiza-
tions. In Proceedings of the 17th IEEE symposium on High Performance Interconnects
(HOTI 2009), 63–72. doi:10.1109/HOTI.2009.12. (cited on page 49)

Filippone, S. and Colajanni, M., 2000. PSBLAS: a library for parallel linear algebra
computation on sparse matrices. ACM Transactions on Mathematical Software, 26, 4
(Dec. 2000), 527–550. doi:10.1145/365723.365732. (cited on page 36)

Fink, S.; Knobe, K.; and Sarkar, V., 2000. Unified analysis of array and object
references in strongly typed languages. In Proceedings of the Seventh International
Static Analysis Symposium (SAS 2000). doi:10.1007/978-3-540-45099-3_9. (cited on
page 55)

Fock, V., 1930. Näherungsmethode zur Lösung des quantenmechanischen Mehrkör-
perproblems. Physik, 61 (1930), 126–148. (cited on page 24)

Frigo, M. and Johnson, S., 2005. The design and implementation of FFTW3. Pro-
ceedings of the IEEE, 93, 2 (Feb 2005), 216–231. doi:10.1109/JPROC.2004.840301. (cited
on pages 36 and 89)

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheese-
man, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji,
H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng,
G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa,
J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Mont-
gomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers,
E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari,
K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Mil-
lam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo,
J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,
C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth,
G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; and Fox, D. J., 2009. Gaussian 09
Revision A.1. Gaussian Inc. Wallingford CT. (cited on page 24)

Fujiwara, M.; Happo, N.; and Tanaka, K., 2010. Influence of ion-ion Coulomb
interactions on FT-ICR mass spectra at a high magnetic field: A many-particle sim-
ulation using a special-purpose computer. Journal of the Mass Spectrometry Society of
Japan, 58 (2010), 169–173. doi:10.5702/massspec.58.169. (cited on page 35)

Ganesan, N.; Bauer, B.; Patel, S.; and Taufer, M., 2011. FENZI: GPU-enabled molec-
ular dynamics simulations of large membrane regions based on the CHARMM
force field and PME. In Proceedings of Tenth IEEE International Workshop on High Per-
formance Computational Biology (HiCOMB 2011). doi:10.1109/IPDPS.2011.187. (cited
on page 87)

http://dx.doi.org/10.1109/HOTI.2009.12
http://dx.doi.org/10.1145/365723.365732
http://dx.doi.org/10.1007/978-3-540-45099-3_9
http://dx.doi.org/10.1109/JPROC.2004.840301
http://dx.doi.org/10.5702/massspec.58.169
http://dx.doi.org/10.1109/IPDPS.2011.187

Bibliography 129

Graph500, 2010. The Graph500 list. http://www.graph500.org/. (cited on page 37)

Greengard, L. and Rokhlin, V., 1987. A fast algorithm for particle simulations.
Journal of Computational Physics, 73 (1987), 325. doi:10.1016/0021-9991(87)90140-9.
(cited on page 31)

Greengard, L. and Rokhlin, V., 1997. A new version of the fast multipole method
for the Laplace equation in three dimensions. Acta Numerica, 6 (1997), 229. doi:
10.1017/s0962492900002725. (cited on page 31)

Grove, D.; Milthorpe, J.; and Tardieu, O., 2014. Supporting array programming
in X10. In Proceedings of ACM SIGPLAN International Workshop on Libraries, Lan-
guages, and Compilers for Array Programming, ARRAY’14 (Edinburgh, United King-
dom, 2014), 38–43. ACM, New York, NY, USA. doi:10.1145/2627373.2627380. (cited
on page 54)

Grove, D.; Tardieu, O.; Cunningham, D.; Herta, B.; Peshansky, I.; and Saraswat,
V., 2011. A performance model for X10 applications: what’s going on under the
hood? In Proceedings of the 2011 ACM SIGPLAN X10 Workshop, X10 ’11, 1:1–1:8.
ACM, New York, NY, USA. doi:10.1145/2212736.2212737. (cited on pages 40
and 97)

Guan, S. and Marshall, A. G., 1995. Ion traps for Fourier transform ion cyclotron
resonance mass spectrometry: principles and design of geometric and electric
configurations. International Journal of Mass Spectrometry and Ion Processes, 146/147
(1995), 261–296. (cited on pages 107 and 108)

Hadoop. http://hadoop.apache.org. Apache Software Foundation. (cited on page 36)

Hall, G. G., 1951. The molecular orbital theory of chemical valency. VIII. a method
of calculating ionization potentials. Proceedings of the Royal Society of London. Series
A. Mathematical and Physical Sciences, 205, 1083 (Mar. 1951), 541–552. doi:10.1098/
rspa.1951.0048. (cited on page 25)

Hamada, T.; Narumi, T.; Yokota, R.; Yasuoka, K.; Nitadori, K.; and Taiji, M., 2009.
42 TFlops hierarchical N-body simulations on GPUs with applications in both
astrophysics and turbulence. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, 62:1–62:12. ACM, New York,
NY, USA. doi:10.1145/1654059.1654123. (cited on page 38)

Hamouda, S. S.; Milthorpe, J.; Strazdins, P. E.; and Saraswat, V., 2015. A resilient
framework for iterative linear algebra applications in x10. In Proceedings of the
16th IEEE International Workshop on Parallel and Distributed Scientific and Engineering
Computing, PDSEC 2015. (cited on page 21)

Hansson, T.; Oostenbrink, C.; and van Gunsteren, W. F., 2002. Molecular dy-
namics simulations. Current Opinion in Structural Biology, 12, 2 (2002), 190–196.
doi:10.1016/S0959-440X(02)00308-1. (cited on page 29)

http://www.graph500.org/
http://dx.doi.org/10.1016/0021-9991(87)90140-9
http://dx.doi.org/10.1017/s0962492900002725
http://dx.doi.org/10.1017/s0962492900002725
http://dx.doi.org/10.1145/2627373.2627380
http://dx.doi.org/10.1145/2212736.2212737
http://hadoop.apache.org
http://dx.doi.org/10.1098/rspa.1951.0048
http://dx.doi.org/10.1098/rspa.1951.0048
http://dx.doi.org/10.1145/1654059.1654123
http://dx.doi.org/10.1016/S0959-440X(02)00308-1

130 Bibliography

Haring, R.; Ohmacht, M.; Fox, T.; Gschwind, M.; Satterfield, D.; Sugavanam,
K.; Coteus, P.; Heidelberger, P.; Blumrich, M.; Wisniewski, R.; Gara, A.; Chiu,
G.-T.; Boyle, P.; Chist, N.; and Kim, C., 2012. The IBM Blue Gene/Q compute chip.
IEEE Micro, 32, 2 (2012), 48–60. doi:10.1109/MM.2011.108. (cited on pages 103, 115,
and 119)

Harrison, R.; Guest, M.; Kendall, R.; Bernholdt, D.; Wong, A.; Stave, M.; An-
chell, J.; Hess, A.; Littlefield, R.; Fann, G.; Nieplocha, J.; Thomas, G.; El-
wood, D.; Tilson, J.; Shepard, R.; Wagner, A.; Foster, I.; Lusk, E.; and Stevens,
R., 1996. Toward high-performance computational chemistry: II. A scalable self-
consistent field program. Journal of Computational Chemistry, 17 (Jan 1996), 124–132.
doi:10.1002/(SICI)1096-987X(19960115)17:1<124::AID-JCC10>3.0.CO;2-N. (cited on page
26)

Häser, M. and Ahlrichs, R., 1989. Improvements on the direct SCF method. Journal
of Computational Chemistry, 10, 1 (1989), 104–111. doi:10.1002/jcc.540100111. (cited
on page 63)

Heffelfinger, G. S., 2000. Parallel atomistic simulations. Computer Physics Commu-
nications, 128, 1–2 (Jun. 2000), 219–237. doi:10.1016/S0010-4655(00)00050-3. (cited
on page 85)

Heroux, M. A. and Dongarra, J., 2013. Toward a new metric for ranking high per-
formance computing systems. Technical Report SAND2013-4744, Sandia National
Laboratories. (cited on page 37)

Hess, B.; Kutzner, C.; van der Spoel, D.; and Lindahl, E., 2008. GROMACS 4:
Algorithms for highly efficient, load-balanced, and scalable molecular simulation.
Journal of Chemical Theory and Computation, 4, 3 (Mar 2008), 435–447. doi:10.1021/
ct700301q. (cited on pages 36, 83, and 84)

Hess, B.; van der Spoel, D.; and Lindahl, E., 2013. GROMACS user manual.
Technical Report 4.6.1, University of Groningen. (cited on page 31)

Hochstein, L.; Carver, J.; Shull, F.; Asgari, S.; Basili, V.; Hollingsworth, J. K.;
and Zelkowitz, M. V., 2005. Parallel programmer productivity: A case study of
novice parallel programmers. In Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, SC ’05, 35. IEEE Computer Society, Washington, DC, USA. doi:
10.1109/SC.2005.53. (cited on page 17)

Hockney, R. and Eastwood, J., 1988. Computer simulation using particles. Institute of
Physics Publishing. ISBN 0-85274-392-0. (cited on page 37)

Hoefler, T.; Siebert, C.; and Rehm, W., 2007. A practically constant-time MPI
broadcast algorithm for large-scale InfiniBand clusters with multicast. In Proceedings
of the 21st IEEE International Parallel and Distributed Processing Symposium (IPDPS
2007), 1–8. doi:10.1109/IPDPS.2007.370475. (cited on page 49)

http://dx.doi.org/10.1109/MM.2011.108
http://dx.doi.org/10.1002/(SICI)1096-987X(19960115)17:1<124::AID-JCC10>3.0.CO;2-N
http://dx.doi.org/10.1002/jcc.540100111
http://dx.doi.org/10.1016/S0010-4655(00)00050-3
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1109/SC.2005.53
http://dx.doi.org/10.1109/SC.2005.53
http://dx.doi.org/10.1109/IPDPS.2007.370475

Bibliography 131

Huang, C.; Lawlor, O.; and Kalé, L. V., 2003. Adaptive MPI. In Proceedings of the
16th International Workshop on Languages and Compilers for Parallel Computing (LCPC
03, 306–322. (cited on page 8)

IBM, 2012. A2 processor user’s manual for Blue Gene/Q. Technical report, IBM.
https://wiki.alcf.anl.gov/parts/images/c/cf/A2.pdf. (cited on page 5)

IEEE, 2008. IEEE standard for information technology- portable operating system
interface (POSIX) base specifications, issue 7. IEEE Std 1003.1-2008 (Revision of IEEE
Std 1003.1-2004), (2008). doi:10.1109/IEEESTD.2008.4694976. (cited on page 10)

Intel, 2011. Intel 64 and IA-32 architectures optimization reference manual. Technical
Report 248966-025, Intel Corporation. (cited on page 84)

Intel, 2013a. Intel 64 and IA-32 architectures software developer manuals. http://www.
intel.com/content/www/us/en/processors/architectures-software-developer-manuals.
html. (cited on pages 5 and 115)

Intel, 2013b. Intel MPI benchmarks user guide and methodology de-
scription version 3.2.3. Technical Report 320714-007EN, Intel Corpora-
tion. http://software.intel.com/sites/products/documentation/hpc/ics/imb/32/IMB_Users_
Guide/IMB_Users_Guide.pdf. (cited on page 52)

Ishiyama, T.; Nitadori, K.; and Makino, J., 2012. 4.45 pflops astrophysical N-body
simulation on K computer: the gravitational trillion-body problem. In Proceedings of
the International Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’12, 5:1–5:10. IEEE Computer Society Press, Los Alamitos, CA, USA.
doi:10.1109/SC.2012.3. (cited on page 38)

Izmaylov, A. F.; Scuseria, G. E.; and Frisch, M. J., 2006. Efficient evaluation of short-
range Hartree–Fock exchange in large molecules and periodic systems. Journal of
Chemical Physics, 125, 10 (Sep. 2006), 104103. doi:doi:10.1063/1.2347713. (cited on
page 28)

Ji, Y.; Liu, L.; and Yang, G., 2012. Characterization of Smith-Waterman sequence
database search in X10. In Proceedings of the 2012 ACM SIGPLAN X10 Workshop,
X10 ’12, 2:1–2:7. ACM, New York, NY, USA. doi:10.1145/2246056.2246058. (cited
on page 37)

Joyner, M.; Budimlic, Z.; Sarkar, V.; and Zhang, R., 2008. Array optimizations
for parallel implementations of high productivity languages. In Proceedings of the
22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS 2008),
1–8. doi:10.1109/IPDPS.2008.4536185. (cited on page 54)

Kalé, L. V. and Krishnan, S., 1993. CHARM++: a portable concurrent object oriented
system based on C++. SIGPLAN Notices, 28, 10 (Oct. 1993), 91–108. doi:10.1145/
167962.165874. (cited on page 8)

https://wiki.alcf.anl.gov/parts/images/c/cf/A2.pdf
http://dx.doi.org/10.1109/IEEESTD.2008.4694976
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://software.intel.com/sites/products/documentation/hpc/ics/imb/32/IMB_Users_Guide/IMB_Users_Guide.pdf
http://software.intel.com/sites/products/documentation/hpc/ics/imb/32/IMB_Users_Guide/IMB_Users_Guide.pdf
http://dx.doi.org/10.1109/SC.2012.3
http://dx.doi.org/doi:10.1063/1.2347713
http://dx.doi.org/10.1145/2246056.2246058
http://dx.doi.org/10.1109/IPDPS.2008.4536185
http://dx.doi.org/10.1145/167962.165874
http://dx.doi.org/10.1145/167962.165874

132 Bibliography

Kawachiya, K.; Takeuchi, M.; Zakirov, S.; and Onodera, T., 2012. Distributed
garbage collection for managed X10. In Proceedings of the 2012 ACM SIGPLAN
X10 Workshop, X10 ’12, 5:1–5:11. ACM, New York, NY, USA. doi:10.1145/2246056.
2246061. (cited on page 19)

Khronos, 2012. The OpenCL specification. Technical Report 1.2, Khronos OpenCL
Working Group. http://www.khronos.org/registry. (cited on page 13)

Kjolstad, F. and Snir, M., 2010. Ghost cell pattern. In Proceedings of the 2010 Workshop
on Parallel Programming Patterns (ParaPLoP ’10). doi:10.1145/1953611.1953615. (cited
on page 57)

Kuck, D. J., 2004. Productivity in HPC. International Journal of High Performance
Computing Applications, 18 (Nov 2004), 489–504. doi:10.1177/1094342004048541.
(cited on page 2)

Kudin, K. and Scuseria, G., 1998. A fast multipole method for periodic systems
with arbitrary unit cell geometries. Chemical Physics Letters, 283 (Jan 1998), 61.
doi:10.1016/s0009-2614(97)01329-8. (cited on page 31)

Kumar, S.; Mamidala, A.; Faraj, D.; Smith, B.; Blocksome, M.; Cernohous,
B.; Miller, D.; Parker, J.; Ratterman, J.; Heidelberger, P.; Chen, D.; and

Steinmacher-Burrow, B., 2012. PAMI: a parallel active message interface for the
Blue Gene/Q supercomputer. In Proceedings of the 26th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2012), 763–773. doi:10.1109/IPDPS.2012.73.
(cited on page 9)

Kurzak, J. and Pettitt, B. M., 2005. Massively parallel implementation of a fast mul-
tipole method for distributed memory machines. Journal of Parallel and Distributed
Computing, 65 (2005), 870–881. doi:10.1016/j.jpdc.2005.02.001. (cited on page 95)

Lambert, C.; Darden, T.; and Board, J. J., 1996. A multipole-based algorithm for
efficient calculation of forces and potentials in macroscopic periodic assemblies of
particles. Journal of Computational Physics, 126 (Jul 1996), 274. doi:10.1006/jcph.1996.
0137. (cited on page 31)

Lamport, L., 1979. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers, C-28, 9 (1979), 690–691.
doi:10.1109/TC.1979.1675439. (cited on page 15)

Lashuk, I.; Chandramowlishwaran, A.; Langston, H.; Nguyen, T.-A.; Sampath,
R.; Shringarpure, A.; Vuduc, R.; Ying, L.; Zorin, D.; and Biros, G., 2009. A
massively parallel adaptive fast-multipole method on heterogeneous architectures.
In Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis. doi:10.1145/1654059.1654118. (cited on pages 33 and 95)

Lea, D., 2000. A Java fork/join framework. In Proceedings of the ACM 2000 conference on
Java Grande, JAVA ’00, 36–43. ACM, New York, NY, USA. doi:10.1145/337449.337465.
(cited on page 13)

http://dx.doi.org/10.1145/2246056.2246061
http://dx.doi.org/10.1145/2246056.2246061
http://www.khronos.org/registry
http://dx.doi.org/10.1145/1953611.1953615
http://dx.doi.org/10.1177/1094342004048541
http://dx.doi.org/10.1016/s0009-2614(97)01329-8
http://dx.doi.org/10.1109/IPDPS.2012.73
http://dx.doi.org/10.1016/j.jpdc.2005.02.001
http://dx.doi.org/10.1006/jcph.1996.0137
http://dx.doi.org/10.1006/jcph.1996.0137
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1145/1654059.1654118
http://dx.doi.org/10.1145/337449.337465

Bibliography 133

Leach, F.; Kharchenko, A.; Heeren, R.; Nikolaev, E.; and Amster, I., 2009. Compar-
ison of particle-in-cell simulations with experimentally observed frequency shifts
between ions of the same mass-to-charge in Fourier transform ion cyclotron reso-
nance mass spectrometry. Journal of the American Society for Mass Spectrometry, 21
(Oct 2009), 203–208. doi:10.1016/j.jasms.2009.10.001. (cited on page 35)

Leiserson, C. E., 2010. The Cilk++ concurrency platform. Journal of Supercomputing,
51, 3 (Mar. 2010), 244–257. doi:10.1007/s11227-010-0405-3. (cited on pages 12
and 13)

Limpanuparb, T., 2012. Applications of Resolutions of the Coulomb Operator in Quantum
Chemistry. Ph.D. thesis, Australian National University, Canberra, Australia. http:
//hdl.handle.net/1885/8879. ANU Digital Collections Repository. (cited on pages 27
and 28)

Limpanuparb, T.; Hollett, J. W.; and Gill, P. M. W., 2012. Resolutions of the
Coulomb operator. VI. Computation of auxiliary integrals. Journal of Chemical
Physics, 136, 10 (Mar. 2012), 104102. doi:doi:10.1063/1.3691829. (cited on page
62)

Limpanuparb, T.; Milthorpe, J.; and Rendell, A., 2014. Resolutions of the Coulomb
operator: VIII. Parallel implementation using the modern programming language
X10. Journal of Computational Chemistry, 35, 28 (Oct 2014), 2056–2069. doi:10.1002/
jcc.23720. (cited on page 62)

Limpanuparb, T.; Milthorpe, J.; Rendell, A.; and Gill, P., 2013. Resolutions
of the Coulomb operator: VII. Evaluation of long-range Coulomb and exchange
matrices. Journal of Chemical Theory and Computation, 9, 2 (Jan 2013), 863–867. doi:
10.1021/ct301110y. (cited on pages 27, 28, 62, 63, and 74)

Ltaief, H. and Yokota, R., 2012. Data-driven execution of fast multipole methods.
CoRR, (2012). arXiv:abs/1203.0889. (cited on page 33)

Lüthi, H. P.; Mertz, J. E.; Feyereisen, M. W.; and Almlöf, J. E., 1991. A coarse-
grain parallel implementation of the direct SCF method. Journal of Computational
Chemistry, 13 (1991), 160. doi:10.1002/jcc.540130207. (cited on page 26)

Maheshwary, S.; Patel, N.; Sathyamurthy, N.; Kulkarni, A. D.; and Gadre, S. R.,
2001. Structure and stability of water clusters (H2O)n, n = 8–20: An ab initio
investigation. Journal of Physical Chemistry A, 105, 46 (Nov. 2001), 10525–10537.
doi:10.1021/jp013141b. (cited on page 73)

Marshall, A.; Hendrickson, C.; and Jackson, G., 1998. Fourier transform ion cy-
clotron resonance mass spectrometry: A primer. Mass Spectrometry Reviews, 17 (Jan
1998), 1–35. doi:10.1002/(SICI)1098-2787(1998)17:1<1::AID-MAS1>3.0.CO;2-K. (cited on
page 33)

http://dx.doi.org/10.1016/j.jasms.2009.10.001
http://dx.doi.org/10.1007/s11227-010-0405-3
http://hdl.handle.net/1885/8879
http://hdl.handle.net/1885/8879
http://dx.doi.org/doi:10.1063/1.3691829
http://dx.doi.org/10.1002/jcc.23720
http://dx.doi.org/10.1002/jcc.23720
http://dx.doi.org/10.1021/ct301110y
http://dx.doi.org/10.1021/ct301110y
http://dx.doi.org/10.1002/jcc.540130207
http://dx.doi.org/10.1021/jp013141b
http://dx.doi.org/10.1002/(SICI)1098-2787(1998)17:1<1::AID-MAS1>3.0.CO;2-K

134 Bibliography

Martorell, X.; Labarta, J.; Navarro, N.; and Ayguadé, E., 1996. A library im-
plementation of the nano-threads programming model. In Euro-Par’96 Parallel
Processing, 644–649. doi:10.1007/BFb0024761. (cited on page 10)

McCool, M.; Reinders, J.; and Robison, A., 2012. Structured Parallel Programming:
Patterns for Efficient Computation. Elsevier. ISBN 9780123914439. (cited on page 11)

Mellor-Crummey, J.; Adhianto, L.; Scherer, W. N., III; and Jin, G., 2009. A new
vision for Coarray Fortran. In Proceedings of the Third Conference on Partitioned Global
Address Space Programming Models, PGAS ’09, 5:1–5:9. ACM, New York, NY, USA.
doi:10.1145/1809961.1809969. (cited on page 16)

Milthorpe, J.; Ganesh, V.; Rendell, A.; and Grove, D., 2011. X10 as a parallel
language for scientific computation: practice and experience. In Proceedings of the
25th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2011),
1080–1088. doi:10.1109/IPDPS.2011.103. (cited on pages 39, 62, 65, 83, and 90)

Milthorpe, J. and Rendell, A., 2012. Efficient update of ghost regions using active
messages. In Proceedings of the 19th IEEE International Conference on High Performance
Computing (HiPC 2012). doi:10.1109/HiPC.2012.6507484. (cited on pages 37, 39, 55,
83, and 97)

Milthorpe, J.; Rendell, A.; and Huber, T., 2013. PGAS-FMM: Implementing a dis-
tributed fast multipole method using the X10 programming language. Concurrency
and Computation: Practice and Experience, (May 2013). doi:10.1002/cpe.3039. (cited
on page 83)

Min, S.-J.; Iancu, C.; and Yelick, K., 2011. Hierarchical work stealing on manycore
clusters. In Proceedings of the Fifth Conference on Partitioned Global Address Space
Programming Models (PGAS ’11). Galveston Island, TX. (cited on page 16)

MPI Forum, 1994. MPI: A message-passing interface standard. Technical report, MPI
Forum. http://www.mpi-forum.org/docs/mpi-10.ps. (cited on page 8)

MPI Forum, 2003. MPI-2: Extensions to the message-passing interface. Technical
report, MPI Forum. http://www.mpi-forum.org/docs/mpi2-report.pdf. (cited on page
8)

MPI Forum, 2012. MPI: A message-passing interface standard version 3.0. Technical
report, MPI Forum. http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf. (cited
on page 8)

Nakashima, J. and Taura, K., 2014. MassiveThreads: A thread library for high
productivity languages. In Concurrent Objects and Beyond, 222–238. doi:10.1007/
978-3-662-44471-9_10. (cited on page 10)

Nieplocha, J.; Palmer, B.; Tipparaju, V.; Krishnan, M.; Trease, H.; and Apra,
E., 2006a. Advances, applications and performance of the Global Arrays shared

http://dx.doi.org/10.1007/BFb0024761
http://dx.doi.org/10.1145/1809961.1809969
http://dx.doi.org/10.1109/IPDPS.2011.103
http://dx.doi.org/10.1109/HiPC.2012.6507484
http://dx.doi.org/10.1002/cpe.3039
http://www.mpi-forum.org/docs/mpi-10.ps
http://www.mpi-forum.org/docs/mpi2-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://dx.doi.org/10.1007/978-3-662-44471-9_10
http://dx.doi.org/10.1007/978-3-662-44471-9_10

Bibliography 135

memory programming toolkit. International Journal of High Performance Computing
Applications, 20 (May 2006), 203. doi:10.1177/1094342006064503. (cited on pages
17, 26, and 57)

Nieplocha, J.; Tipparaju, V.; Krishnan, M.; and Panda, D. K., 2006b. High per-
formance remote memory access communication: the ARMCI approach. Interna-
tional Journal of High Performance Computing Applications, 20, 2 (May 2006), 233–253.
doi:10.1177/1094342006064504. (cited on page 9)

Nikolaev, E.; Heeren, R.; Popov, A.; Pozdneev, A.; and Chingin, K., 2007. Realistic
modeling of ion cloud motion in a Fourier transform ion cyclotron resonance cell
by use of a particle-in-cell approach. Rapid Communications in Mass Spectrometry, 21
(2007), 3527. doi:10.1002/rcm.3234. (cited on pages 35 and 109)

Numrich, R. W. and Reid, J., 1998. Co-array Fortran for parallel programming.
SIGPLAN Fortran Forum, 17, 2 (Aug. 1998), 1–31. doi:10.1145/289918.289920. (cited
on page 16)

NVIDIA, 2013. CUDA. Technical report, NVIDIA. http://developer.nvidia.com/cuda.
(cited on page 15)

Ochsenfeld, C.; Kussmann, J.; and Lambrecht, D. S., 2007. Linear-scaling methods
in quantum chemistry. In Reviews in Computational Chemistry (Eds. K. B. Lipkowitz

and T. R. Cundari), 1–82. John Wiley & Sons, Inc. ISBN 9780470116449. (cited on
page 27)

OpenMP ARB, 2008. OpenMP application program interface version 3.0. Technical
report, OpenMP Architecture Review Board. http://www.openmp.org/mp-documents/
spec30.pdf. (cited on page 11)

OpenMP ARB, 2013. OpenMP application program interface version 4.0. Technical
report, OpenMP Architecture Review Board. http://www.openmp.org/mp-documents/
OpenMP4.0.0.pdf. (cited on page 12)

Page, L.; Brin, S.; Motwani, R.; and Winograd, T., 1999. The PageRank citation
ranking: Bringing order to the Web. Technical Report SIDL-WP-1999-0120, Stanford
University. http://ilpubs.stanford.edu:8090/422/. (cited on page 20)

Palmer, B. and Nieplocha, J., 2002. Efficient algorithms for ghost cell updates on
two classes of MPP architectures. In Proceedings of the 14th IASTED International
Conference on Parallel and Distributed Computing and Systems (PDCS 2002), 197–202.
http://www.emsl.pnl.gov/docs/global/papers/ghosts.pdf. (cited on page 57)

Patacchini, L. and Hutchinson, I., 2009. Explicit time-reversible orbit integration
in particle in cell codes with static homogeneous magnetic field. Journal of Compu-
tational Physics, 228 (2009), 2604. doi:10.1016/j.jcp.2008.12.021. (cited on pages 107
and 108)

http://dx.doi.org/10.1177/1094342006064503
http://dx.doi.org/10.1177/1094342006064504
http://dx.doi.org/10.1002/rcm.3234
http://dx.doi.org/10.1145/289918.289920
http://developer.nvidia.com/cuda
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://ilpubs.stanford.edu:8090/422/
http://www.emsl.pnl.gov/docs/global/papers/ghosts.pdf
http://dx.doi.org/10.1016/j.jcp.2008.12.021

136 Bibliography

Petitet, A.; Whaley, R. C.; Dongarra, J.; and Cleary, A., 2008. HPL - a portable im-
plementation of the High-Performance Linpack benchmark for distributed-memory
computers. http://www.netlib.org/benchmark/hpl/. (cited on page 37)

Poulson, J.; Marker, B.; van de Geijn, R. A.; Hammond, J. R.; and Romero,
N. A., 2013. Elemental: A new framework for distributed memory dense ma-
trix computations. ACM Transactions on Mathematical Software, 39, 2 (Feb. 2013),
1–24. doi:10.1145/2427023.2427030. (cited on pages 36 and 37)

Prantl, A.; Epperly, T.; Imam, S.; and Sarkar, V., 2011. Interfacing Chapel with
traditional HPC programming languages. In Proceedings of the Fifth Conference on
Partitioned Global Address Space Programming Models (PGAS 2011). (cited on page
22)

Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts,
M. R.; Smith, J. C.; Kasson, P. M.; Spoel, D. v. d.; Hess, B.; and Lindahl, E., 2013.
GROMACS 4.5: a high-throughput and highly parallel open source molecular sim-
ulation toolkit. Bioinformatics, (Feb. 2013). doi:10.1093/bioinformatics/btt055. (cited
on page 31)

Rahimian, A.; Lashuk, I.; Veerapaneni, S.; Chandramowlishwaran, A.; Mal-
hotra, D.; Moon, L.; Sampath, R.; Shringarpure, A.; Vetter, J.; Vuduc, R.;
Zorin, D.; and Biros, G., 2010. Petascale direct numerical simulation of blood
flow on 200K cores and heterogeneous architectures. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC ’10, 1–11. IEEE Computer Society, Washington, DC, USA.
doi:10.1109/SC.2010.42. (cited on page 38)

Reinders, J., 2010. Intel Threading Building Blocks: Outfitting C++ for Multi-core Proces-
sor Parallelism. O’Reilly Media, Inc. ISBN 9781449390860. (cited on page 13)

Ritchie, D. M. and Thompson, K., 1974. The UNIX time-sharing system. Communi-
cations of the ACM, 17, 7 (Jul. 1974), 365–375. doi:10.1145/361011.361061. (cited on
page 7)

Robison, A.; Voss, M.; and Kukanov, A., 2008. Optimization via reflection on work
stealing in TBB. In Proceedings of the 22nd IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2008). doi:10.1109/IPDPS.2008.4536188. (cited on page
13)

Roothaan, C. C. J., 1951. New developments in molecular orbital theory. Reviews of
Modern Physics, 23, 2 (Apr. 1951), 69–89. doi:10.1103/RevModPhys.23.69. (cited on
page 25)

Saraswat, V.; Almasi, G.; Bikshandi, G.; Cascaval, C.; Cunningham, D.; Grove, D.;
Kodali, S.; Peshansky, I.; and Tardieu, O., 2010. The asynchronous partitioned
global address space model. In Proceedings of The First Workshop on Advances in
Message Passing. (cited on page 2)

http://www.netlib.org/benchmark/hpl/
http://dx.doi.org/10.1145/2427023.2427030
http://dx.doi.org/10.1093/bioinformatics/btt055
http://dx.doi.org/10.1109/SC.2010.42
http://dx.doi.org/10.1145/361011.361061
http://dx.doi.org/10.1109/IPDPS.2008.4536188
http://dx.doi.org/10.1103/RevModPhys.23.69

Bibliography 137

Saraswat, V.; Bloom, B.; Peshansky, I.; Tardieu, O.; and Grove, D., 2014. X10
language specification version 2.5. Technical report, IBM. http://x10.sourceforge.net/
documentation/languagespec/x10-250.pdf. (cited on pages 17, 47, and 50)

Saraswat, V.; Kambadur, P.; Kodali, S.; Grove, D.; and Krishnamoorthy, S., 2011.
Lifeline-based global load balancing. In Proceedings of the 16th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming (PPoPP ’11). doi:10.1145/
1941553.1941582. (cited on pages 19 and 37)

Scherer, W. N. I.; Adhianto, L.; Jin, G.; Mellor-Crummey, J.; and Yang, C., 2010.
Hiding latency in Coarray Fortran 2.0. In Proceedings of the Fourth Conference on
Partitioned Global Address Space Programming Model, PGAS ’10, 14:1–14:9. ACM, New
York, NY, USA. doi:10.1145/2020373.2020387. (cited on page 20)

Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.;
Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.;
Dupuis, M.; and Montgomery, J. A., 1993. General atomic and molecular electronic
structure system. Journal of Computational Chemistry, 14 (Nov 1993), 1347–1363.
doi:10.1002/jcc.540141112. (cited on page 24)

Shah, G.; Nieplocha, J.; Mirza, J.; Kim, C.; Harrison, R.; Govindaraju, R.;
Gildea, K.; DiNicola, P.; and Bender, C., 1998. Performance and experience
with LAPI - a new high-performance communication library for the IBM RS/6000
SP. In Proceedings of the First Merged International Parallel Processing Symposium
and Symposium on Parallel and Distributed Processing (IPPS/SPDP 1998), 260–266.
doi:10.1109/IPPS.1998.669923. (cited on page 9)

Shao, Y.; Molnar, L.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S.; Gilbert,
A.; Slipchenko, L.; Levchenko, S.; O’Neill, D.; Distasio, R.; Lochan, R.; Wang,
T.; Beran, G.; Besley, N.; Herbert, J.; Lin, C.; van Voorhis, T.; Chien, S.; Sodt,
A.; Steele, R.; Rassolov, V.; Maslen, P.; Korambath, P.; Adamson, R.; Austin, B.;
Baker, J.; Byrd, E.; Dachsel, H.; Doerksen, R.; Dreuw, A.; Dunietz, B.; Dutoi,
A.; Furlani, T.; Gwaltney, S.; Heyden, A.; Hirata, S.; Hsu, C.-P.; Kedziora, G.;
Khalliulin, R.; Klunzinger, P.; Lee, A.; Lee, M.; Liang, W.; Lotan, I.; Nair, N.;
Peters, B.; Proynov, E.; Pieniazek, P.; Rhee, Y.; Ritchie, J.; Rosta, E.; Sherrill, C.;
Simmonett, A.; Subotnik, J.; Woodcock, H.; Zhang, W.; Bell, A.; Chakraborty,
A.; Chipman, D.; Keil, F.; Warshel, A.; Hehre, W.; Schaefer, H.; Kong, J.; Krylov,
A.; Gill, P.; and Head-Gordon, M., 2013. Advances in methods and algorithms
in a modern quantum chemistry program package. Physical Chemistry Chemical
Physics, 8 (Jan 2013). doi:10.1039/B517914A. (cited on pages 24 and 73)

Shaw, D.; Dror, R.; Salmon, J.; Grossman, J.; MacKenzie, K.; Bank, J.; Young,
C.; Deneroff, M.; Batson, B.; Bowers, K.; Chow, E.; Eastwood, M.; Ierardi, D.;
Klepeis, J.; Kuskin, J.; Larson, R.; Lindorff-Larsen, K.; Maragakis, P.; Moraes,
M.; Piana, S.; Shan, Y.; and Towles, B., 2009. Millisecond-scale molecular dy-
namics simulations on Anton. In Proceedings of the Conference on High Performance

http://x10.sourceforge.net/documentation/languagespec/x10-250.pdf
http://x10.sourceforge.net/documentation/languagespec/x10-250.pdf
http://dx.doi.org/10.1145/1941553.1941582
http://dx.doi.org/10.1145/1941553.1941582
http://dx.doi.org/10.1145/2020373.2020387
http://dx.doi.org/10.1002/jcc.540141112
http://dx.doi.org/10.1109/IPPS.1998.669923
http://dx.doi.org/10.1039/B517914A

138 Bibliography

Computing Networking, Storage and Analysis, SC ’09. doi:10.1145/1654059.1654099.
(cited on page 29)

Shet, A.; Elwasif, W.; Harrison, R.; and Bernholdt, D., 2008. Programmability of
the HPCS languages: A case study with a quantum chemistry kernel (extended
version). Technical report, Oak Ridge National Laboratory. http://www.csm.ornl.gov/
~anish12/ldoc9885_hips_tr.pdf. (cited on pages 26 and 64)

Shet, A. G.; Tipparaju, V.; and Harrison, R. J., 2009. Asynchronous programming
in UPC: a case study and potential for improvement. In 1st Workshop on Asynchrony
in the PGAS Programming Model (APGAS). (cited on page 20)

Shinnar, A.; Cunningham, D.; Saraswat, V.; and Herta, B., 2012. M3R: in-
creased performance for in-memory Hadoop jobs. Proceedings of the 38th Interna-
tional Conference on Very Large Data Bases (VLDB 2012), 5, 12 (Aug. 2012), 1736–1747.
doi:10.14778/2367502.2367513. (cited on page 37)

Shirako, J. and Sarkar, V., 2010. Hierarchical phasers for scalable synchronization
and reductions in dynamic parallelism. In Proceedings of the 24th IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2010), 1–12. doi:10.1109/IPDPS.
2010.5470414. (cited on page 21)

Springel, V.; Yoshida, N.; and White, S. D., 2001. GADGET: a code for collisionless
and gasdynamical cosmological simulations. New Astronomy, 6, 2 (Apr. 2001), 79–
117. doi:10.1016/S1384-1076(01)00042-2. (cited on page 36)

Sundar, H.; Sampath, R. S.; Adavani, S. S.; Davatzikos, C.; and Biros, G., 2007.
Low-constant parallel algorithms for finite element simulations using linear octrees.
In Proceedings of the 2007 ACM/IEEE conference on Supercomputing, 25:1–25:12. ACM,
New York, NY, USA. doi:10.1145/1362622.1362656. (cited on pages 33 and 36)

Sundar, H.; Sampath, R. S.; and Biros, G., 2008. Bottom-up construction and 2:1
balance refinement of linear octrees in parallel. SIAM Journal on Scientific Computing,
30, 5 (Jan. 2008), 2675–2708. doi:10.1137/070681727. (cited on page 33)

Susukita, R.; Ebisuzaki, T.; Elmegreen, B. G.; Furusawa, H.; Kato, K.; Kawai, A.;
Kobayashi, Y.; Koishi, T.; McNiven, G. D.; Narumi, T.; and Yasuoka, K., 2003.
Hardware accelerator for molecular dynamics: MDGRAPE-2. Computer Physics
Communications, 155, 2 (2003), 115 – 131. doi:10.1016/S0010-4655(03)00349-7. (cited
on page 29)

Szabo, A. and Ostlund, N. S., 1989. Modern Quantum Chemistry. McGraw-Hill, New
York. (cited on pages 24 and 25)

Tardieu, O.; Herta, B.; Cunningham, D.; Grove, D.; Kambadur, P.; Saraswat, V.;
Shinnar, A.; Takeuchi, M.; and Vaziri, M., 2014. X10 and APGAS at petascale. In
Proceedings of the 19th ACM SIGPLAN symposium on Principles and Practice of Parallel
Programming (PPoPP ’14), 53–66. ACM, New York, NY, USA. doi:10.1145/2555243.
2555245. (cited on page 47)

http://dx.doi.org/10.1145/1654059.1654099
http://www.csm.ornl.gov/~anish12/ldoc9885_hips_tr.pdf
http://www.csm.ornl.gov/~anish12/ldoc9885_hips_tr.pdf
http://dx.doi.org/10.14778/2367502.2367513
http://dx.doi.org/10.1109/IPDPS.2010.5470414
http://dx.doi.org/10.1109/IPDPS.2010.5470414
http://dx.doi.org/10.1016/S1384-1076(01)00042-2
http://dx.doi.org/10.1145/1362622.1362656
http://dx.doi.org/10.1137/070681727
http://dx.doi.org/10.1016/S0010-4655(03)00349-7
http://dx.doi.org/10.1145/2555243.2555245
http://dx.doi.org/10.1145/2555243.2555245

Bibliography 139

Tardieu, O.; Lin, H. B.; and Wang, H., 2012. A work-stealing scheduler for X10’s task
parallelism with suspension. In Proceedings of the 17th ACM SIGPLAN symposium
on Principles and Practice of Parallel Programming (PPoPP ’12). doi:10.1145/2370036.
2145850. (cited on pages 19 and 40)

Taura, K.; Nakashima, J.; Yokota, R.; and Maruyama, N., 2012. A task par-
allel implementation of fast multipole methods. In High Performance Comput-
ing, Networking, Storage and Analysis (SCC), 2012 SC Companion:, 617–625. doi:
10.1109/SC.Companion.2012.86. (cited on page 32)

Teruel, X.; Klemm, M.; Li, K.; Martorell, X.; Olivier, S. L.; and Terboven, C.,
2013. A proposal for task-generating loops in OpenMP. In Proceedings of the 9th
International Workshop on OpenMP (IWOMP 2013). doi:10.1007/978-3-642-40698-0_1.
(cited on page 11)

TOP500. Top 500 supercomputer sites. http://www.top500.org. (cited on pages 37
and 114)

Ufimtsev, I. S. and Martínez, T. J., 2008. Quantum chemistry on graphical processing
units. 1. strategies for two-electron integral evaluation. Journal of Chemical Theory
and Computation, 4, 2 (2008), 222–231. doi:10.1021/ct700268q. (cited on page 64)

UPC Consortium, 2005. UPC language specification v1.2. Technical report, Lawrence
Berkeley National Laboratory. http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf. (cited on
page 15)

Valiev, M.; Bylaska, E.; Govind, N.; Kowalski, K.; Straatsma, T.; van Dam,
H.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T.; and de Jong, W., 2010.
NWChem: A comprehensive and scalable open-source solution for large scale
molecular simulations. Computer Physics Communications, 181 (May 2010), 1477.
doi:10.1016/j.cpc.2010.04.018. (cited on pages 17, 24, and 81)

Vladimirov, G.; Hendrickson, C.; Blakney, G.; Marshall, A.; Heeren, R.; and

Nikolaev, E., 2011. Fourier transform ion cyclotron resonance mass resolution
and dynamic range limits calculated by computer modeling of ion cloud motion.
Journal of the American Society for Mass Spectrometry, 23 (Dec 2011), 375. doi:10.1007/
s13361-011-0268-8. (cited on page 35)

von Eicken, T.; Culler, D. E.; Goldstein, S. C.; and Schauser, K. E., 1992. Active
messages: a mechanism for integrated communication and computation. In Pro-
ceedings of the 19th annual International Symposium on Computer Architecture (ISCA
’92), 256–266. ACM, New York, NY, USA. doi:10.1145/139669.140382. (cited on
pages 9 and 46)

Warren, M. and Salmon, J., 1992. Astrophysical n-body simulations using hier-
archical tree data structures. In Proceedings of the 1992 ACM/IEEE conference on
Supercomputing, 570–576. doi:10.1109/SUPERC.1992.236647. (cited on page 92)

http://dx.doi.org/10.1145/2370036.2145850
http://dx.doi.org/10.1145/2370036.2145850
http://dx.doi.org/10.1109/SC.Companion.2012.86
http://dx.doi.org/10.1109/SC.Companion.2012.86
http://dx.doi.org/10.1007/978-3-642-40698-0_1
http://www.top500.org
http://dx.doi.org/10.1021/ct700268q
http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf
http://dx.doi.org/10.1016/j.cpc.2010.04.018
http://dx.doi.org/10.1007/s13361-011-0268-8
http://dx.doi.org/10.1007/s13361-011-0268-8
http://dx.doi.org/10.1145/139669.140382
http://dx.doi.org/10.1109/SUPERC.1992.236647

140 Bibliography

Wheeler, K. B.; Murphy, R. C.; and Thain, D., 2008. Qthreads: An API for
programming with millions of lightweight threads. In Proceedings of the 22nd
IEEE International Parallel and Distributed Processing Symposium (IPDPS 2008). doi:
10.1109/IPDPS.2008.4536359. (cited on page 10)

White, C. and Head-Gordon, M., 1994. Derivation and efficient implementation
of the fast multipole method. Journal of Chemical Physics, 101, 8 (1994), 6593–6605.
doi:10.1063/1.468354. (cited on pages 31 and 32)

White, C. and Head-Gordon, M., 1996. Rotating around the quartic angular mo-
mentum barrier in fast multipole method calculations. Journal of Chemical Physics,
105, 12 (Nov 1996). doi:10.1063/1.472369. (cited on page 92)

White, C. A.; Johnson, B. G.; Gill, P. M.; and Head-Gordon, M., 1996. Linear
scaling density functional calculations via the continuous fast multipole method.
Chemical Physics Letters, 253, 3–4 (May 1996), 268–278. doi:10.1016/0009-2614(96)
00175-3. (cited on page 27)

Yan, Y.; Zhao, J.; Guo, Y.; and Sarkar, V., 2010. Hierarchical place trees: A portable
abstraction for task parallelism and data movement. In Proceedings of the 22nd
International Conference on Languages and Compilers for Parallel Computing, LCPC’09,
172–187. Springer-Verlag, Berlin, Heidelberg. doi:10.1007/978-3-642-13374-9_12.
(cited on pages 21 and 114)

Yelick, K.; Bonachea, D.; Chen, W.-Y.; Colella, P.; Datta, K.; Duell, J.; Graham,
S.; Hargrove, P.; Hilfinger, P.; Husbands, P.; Iancu, C.; Kamil, A.; Nishtala,
R.; Su, J.; Welcome, M.; and Wen, T., 2007a. Productivity and performance using
partitioned global address space languages. In Proceedings of the 2007 international
workshop on Parallel Symbolic Computation, PASCO ’07, 24–32. doi:10.1145/1278177.
1278183. (cited on page 15)

Yelick, K.; Hilfinger, P.; Graham, S.; Bonachea, D.; Su, J.; Kamil, A.; Datta, K.;
Colella, P.; and Wen, T., 2007b. Parallel languages and compilers: Perspective
from the Titanium experience. International Journal of High Performance Computing
Applications, 21, 3 (Aug. 2007), 266–290. doi:10.1177/1094342007078449. (cited on
pages 16 and 54)

Yelick, K.; Semenzato, L.; Pike, G.; Miyamoto, C.; Liblit, B.; Krishnamurthy, A.;
Hilfinger, P.; Graham, S.; Gay, D.; Colella, P.; and Aiken, A., 1998. Titanium:
a high-performance Java dialect. Concurrency: Practice and Experience, 10, 11-13
(1998), 825–836. doi:10.1002/(SICI)1096-9128(199809/11)10:11/13<825::AID-CPE383>3.
0.CO;2-H. (cited on page 16)

Ying, L.; Biros, G.; and Zorin, D., 2004. A kernel-independent adaptive fast multi-
pole algorithm in two and three dimensions. Journal of Computational Physics, 196
(Jan 2004), 591. doi:10.1016/j.jcp.2003.11.021. (cited on page 31)

http://dx.doi.org/10.1109/IPDPS.2008.4536359
http://dx.doi.org/10.1109/IPDPS.2008.4536359
http://dx.doi.org/10.1063/1.468354
http://dx.doi.org/10.1063/1.472369
http://dx.doi.org/10.1016/0009-2614(96)00175-3
http://dx.doi.org/10.1016/0009-2614(96)00175-3
http://dx.doi.org/10.1007/978-3-642-13374-9_12
http://dx.doi.org/10.1145/1278177.1278183
http://dx.doi.org/10.1145/1278177.1278183
http://dx.doi.org/10.1177/1094342007078449
http://dx.doi.org/10.1002/(SICI)1096-9128(199809/11)10:11/13<825::AID-CPE383>3.0.CO;2-H
http://dx.doi.org/10.1002/(SICI)1096-9128(199809/11)10:11/13<825::AID-CPE383>3.0.CO;2-H
http://dx.doi.org/10.1016/j.jcp.2003.11.021

Bibliography 141

Ying, L.; Biros, G.; Zorin, D.; and Langston, H., 2003. A new parallel kernel-
independent fast multipole method. In Proceedings of the 2003 ACM/IEEE conference
on Supercomputing, 14. doi:10.1145/1048935.1050165. (cited on page 33)

Yokota, R., 2013. An FMM based on dual tree traversal for many-core architectures.
Journal of Algorithms & Computational Technology, 7, 3 (Sep. 2013), 301–324. doi:
10.1260/1748-3018.7.3.301. (cited on pages 31, 32, 83, 85, 92, 98, and 100)

http://dx.doi.org/10.1145/1048935.1050165
http://dx.doi.org/10.1260/1748-3018.7.3.301
http://dx.doi.org/10.1260/1748-3018.7.3.301

	Acknowledgments
	Abstract
	Contents
	Introduction
	Scope and Problem Statement
	Contributions
	Thesis Outline

	Programming Models and Patterns for High Performance Scientific Computing
	Distributed Memory Models
	MPI
	Charm++
	Active Messages
	Libraries for One-Sided Communications

	Shared Memory Models
	Pthreads
	OpenMP
	Cilk++
	TBB
	OpenCL / CUDA

	Partitioned Global Address Space Models
	UPC
	Coarray Fortran
	Titanium
	Global Arrays

	Asynchronous Partitioned Global Address Space Models
	X10
	Active Messages in X10
	X10 Global Matrix Library

	Habanero Java
	Chapel
	Fortress

	Quantum Chemistry
	The Self-Consistent Field Method
	Resolution of the Coulomb Operator

	Molecular Dynamics
	Calculation of Electrostatic Interactions
	Particle Mesh Ewald Method
	Fast Multipole Method
	Molecular Dynamics Simulation of Mass Spectrometry

	Application Patterns
	Dense Linear Algebra
	Spectral Methods
	N-body Methods

	Summary

	Improvements to the X10 Language to Support Scientific Applications
	Task Parallelism
	Worker-Local Data
	Managing and Combining Worker-Local Data
	New Variable Modifiers for Productive Programming

	Visualizing Task Locality In A Work Stealing Runtime

	Active Messages
	Serialization of Active Messages
	Byte-Order Swapping
	Object Graphs and Identity

	Collective Active Messages Using finish/ateach
	A Tree-Based Implementation of finish/ateach

	Distributed Arrays
	Indexing of Local Data
	Ghost Region Updates
	Implementing Ghost Region Updates for X10 Distributed Arrays
	Evaluation of Ghost Updates

	Summary

	Electronic Structure Calculations Using X10
	Implementation
	Parallelizing the Resolution of the Operator
	Auxiliary Integral Calculation with a Work Stealing Runtime
	Use of Worker-Local Data to Avoid Synchronization
	Overhead of Activity Management
	Optimizing Auxiliary Integral Calculations for Locality

	Distributed and Replicated Data Structures
	Load Balancing Between Places
	Dense Linear Algebra Using the X10 Global Matrix Library

	Evaluation
	Single-Threaded Performance
	Shared-Memory Scaling
	Distributed-Memory Scaling

	Summary

	Molecular Dynamics Simulation Using X10
	Direct Calculation
	Implementation
	Evaluation

	Particle Mesh Ewald Method
	Implementation
	Domain Decomposition With Distributed Arrays
	Charge Interpolation Over Local Grid Points
	Use of Ghost Region Updates to Exchange Particle Data
	Distributed Fast Fourier Transform

	Evaluation
	Single-Threaded Performance
	Distributed-Memory Scaling

	Fast Multipole Method
	Implementation
	Distributed Tree Structure Using Global References
	Load Balancing
	Global Collective Operations

	Evaluation
	Single-Threaded Performance
	Overhead of Activity Management
	Shared-Memory Scaling
	Distributed-Memory Scaling

	Simulating Ion Interactions in Mass Spectrometry
	Implementation
	Integration Scheme
	Ion Motion
	Induced Current

	Evaluation

	Summary

	Conclusion
	Future Work

	Appendices
	Evaluation Platforms
	List of Abbreviations
	Bibliography

