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Abstract

The Asynchronous Partitioned Global Address Space (AP-
GAS) programming model enables programmers to express
the parallelism and locality necessary for high performance
scientific applications on extreme-scale systems. We used
the well-known LULESH hydrodynamics proxy application
to explore the performance and programmability of the AP-
GAS model as expressed in the X10 programming language.
By extending previous work on efficient exchange of ghost
regions in stencil codes, and by taking advantage of en-
hanced runtime support for collective communications, the
X10 implementation of LULESH exhibits superior perfor-
mance to a reference MPI code when scaling to many nodes
of a large HPC system. Runtime support for local parallel
iteration allows the efficient use of all cores within a node.
The X10 implementation was around 10% faster than the
reference version using C++/OpenMP/MPI, across a range
of 125 to 4,096 places (750 to 24,576 cores). Our improve-
ments to the X10 runtime have broad applicability to other
scientific application codes.

Keywords parallel programming models, Partitioned Global
Address Space, asynchronous tasks, proxy application

1. Introduction

LULESH [3]] is a proxy app for hydrodynamics on an un-
structured mesh. It models the Sedov problem: an expand-
ing shock wave in a single material originating from a point
blast. The simulation iterates over a series of time steps
up to a chosen end time. At each time step, node-centered
kinematic variables and element-centered thermodynamic
variables are advanced to a new state. The new values for
each node or element depend on the values for neighboring
nodes and elements at the previous time step. Version 2 of
LULESH adds multiple regions and variable cost functions,
to more closely simulate the irregular workload of a full hy-
drodynamics code [5].

LULESH provides opportunities for exploiting paral-
lelism at multiple levels, including vectorization, threading
and distributed parallelism. A reference implementation is
provided using C++, OpenMP and MPI. We ported the ref-

erence implementation of LULESH 2.0 to X10, with some
modifications. Whereas the MPI version includes direction-
and domain-specific code for communication of ghost data
between neighboring processes, the X10 ghost region up-
dates are general-purpose and therefore require far fewer
lines of code. The X10 code makes heavy use of function lit-
erals (also called lambdas) to improve readability and avoid
repetition. As a result, the X10 code is significantly more
concise: 2,730 source lines of code for X10 vs. 4,750 for the
reference code. Our full source code is available freely in the
X10 applications repository [[L].

To achieve high performance for LULESH at scale, it
was necessary to improve some aspects of the X10 runtime.
By implementing X10 collective communication on top of
MPI-3 non-blocking collectives [10], we combine the per-
formance of an optimized MPI implementation with the flex-
ibility of active messages in the APGAS model. We also
used LULESH to study the performance and implementation
alternatives for the foreach statement, an efficient mech-
anism for parallel iteration in X10. This work represents
the first large-scale performance evaluation of an X10 ap-
plication that exploits both single-node (multithreaded) and
multi-node (distributed) parallelism.

We begin by surveying related work in Section 2] and re-
viewing the APGAS programming model in Section[3] Next,
we discuss the major technical enhancements to the X10 sys-
tem and the X10 implementation of LULESH; Section
covers ghost region exchange, Section 2] outlines the inte-
gration of MPI-3 non-blocking collectives, and Section [4.3|
describes support for parallel iteration. Section [5]reports on
overall application performance and finally Section [6] con-
cludes.

2. Related Work

LULESH is a well-studied application code which has been
ported to several different programming models. Karlin et al.
[4] use the LULESH proxy application to evaluate eight tra-
ditional and emerging parallel programming models. Their
evaluation includes the Chapel language, which like X10
combines the PGAS programming model with dynamic
tasking. However, the Chapel implementation of LULESH
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focuses on programmability rather than performance and
does not exploit multi-node parallelism.

Zheng et al. [17] present UPC++, a PGAS extension to
C++ that includes asynchronous remote function invoca-
tion. They evaluate the programmability and performance
of UPC++ using five example codes. Porting LULESH to
UPC++ requires little programming effort and improves
performance relative to the MPI reference code, however,
the UPC++ port does not exploit multithreaded parallelism
within a process. Kumar et al. [6] extend UPC++ with work-
stealing within a node. For LULESH, they observe a speedup
of 3.4x when using all 12 cores on their test nodes, compared
to using only a single core.

Murata et al. [11]] describe techniques for obtaining high
performance in porting C/MPI applications to X10, using the
CoMD and MCCK proxy applications. They discuss opti-
mizations for memory allocation and object access, many of
which were used in the X10 port of LULESH. Limpanuparb
et al. [7]] evaluate the performance of a quantum chemistry
code in X10 which uses both multi-threaded and distributed
parallelism. However, they focus on a fixed problem size,
and therefore do not observe scaling above 512 cores.

Milthorpe and Rendell [9] previously presented an imple-
mentation of ghost region updates for X10 distributed arrays.
We improve on this implementation by taking advantage of
support for bulk one-sided transfers [16]], which eliminates
allocation and copying costs associated with standard X10
messages.

3. APGAS Programming Model

The X10 programming language [2| [12] has been developed
as a simple, clean, but powerful and practical programming
language for scale out computation. Its underlying program-
ming model, the APGAS (Asynchronous Partitioned Global
Address Space) model [[13], is organized around the two no-
tions of places and asynchrony. A place is an abstraction of
shared, mutable data and worker threads operating on the
data, typically realized as an operating system process. A
single APGAS computation may consist of hundreds or po-
tentially tens of thousands of places.

Asynchrony is provided through a single block-structured
control construct, async S. If S is a statement, then async S
is a statement that executes S in a separate thread of control
(activity or task). Dually, finish S executes S, and waits
for all tasks spawned (recursively) during the execution of
S to terminate, before continuing. Memory locations in one
place can contain references (global refs) to locations at
other places. To compute upon data at another place, the
at (p) S statement must be used. It permits the current task to
change its place of execution to p, execute S at p and return,
leaving behind tasks that may have been spawned during the
execution of S. The termination of these tasks is detected
by the finish within which the at statement is executing.
The values of variables used in S but defined outside S are

serialized, transmitted to p, and de-serialized to reconstruct
a binding environment in which S is executed. Constructs
are provided for unconditional (atomic S) and conditional
(when (c) S) atomic execution.

More information on X10 and APGAS can be found on-
line athttp://x10-1lang.orgincluding the X10 language
specification [[14], programmer’s guide [15], and a collection
of tutorials and sample programs.

4. Implementing LULESH in X10

To implement LULESH in X10 so as to exploit both multi-
threaded and distributed parallelism, the primary challenges
were: i) efficient exchange of ghost region data between
neighboring places; ii) collective reduction of time con-
straints across all places; and iii) local parallel iteration
within the numerical kernels of the application. In the fol-
lowing subsections, we consider each in turn.

4.1 Ghost Region Updates

In the reference code, the LULESH simulation domain is di-
vided between MPI processes; similarly, in our code, the do-
main is divided between X 10 places. Each place holds a rect-
angular block of elements, as well as the nodes that define
those elements. A series of stencil operations are applied to
update the element and node quantities at each time step. As
the stencil operations require element- or node-centered val-
ues from a local neighborhood, it is necessary to exchange
boundary or ghost regions between neighboring processes.
Each place exchanges ghost regions across plane, edge and
corner boundaries (in the case of kinematic variables) or
plane boundaries only (in the case of artificial viscosity gra-
dients).

In the X10 code, ghost region exchange is encapsu-
lated within the GhostManager class. The design extends
a previous implementation using X10 active messages [9].
During program initialization, each place instantiates four
GhostManager instances to communicate nodal mass, posi-
tion and velocities, force, and gradient information. Based
on the position of its place in the simulation grid and the
kind of information being exchanged, each GhostManager
instance computes the set of neighbors with which it will
exchange data and pre-allocates the necessary storage to
send/receive the data.

Figure/[T]illustrates the usage and internal implementation
of the GhostManager. In the main application code, an entire
ghost region exchange is encapsulated within two function
calls (lines [2] and [3). The rest of Figure [I] shows the X10
code necessary to implement this loosely synchronized ex-
change of data. In lines the sending place gathers the
needed simulation data into buffer data. The at statement at
line |14] spawns a remote task at the receiving place, which
at li calls the Rail.copy[l] method to transfer the con-

I'The Rail class represents a one-dimensional, zero-based, densely-
indexed array, analogous to a C-style array.
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1 // Invocation of GhostManager API by LULSEH application
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3

4

forceGhostMgr.gatherBoundariesToCombine();
forceGhostMgr.waitAndCombineBoundaries();

s // Send boundary data from this place to neighboring places to be

6

7
8
9

)

3

25
26
27
28
29
30
31
32
33

34

// combined later by waitAndCombineBoundaries.
public def gatherBoundariesToCombine() {
val src_ls = localState();
val sourceDom = src_ls.domainPlh();
val sourceld = here.id;
for (i in src_ls.neighborListSend.range) {
val data = src_ls.sendBuffers(i);

sourceDom.gatherData(data, src_ls.sendRegions(i), src_ls.accessFields, src_ls.sideLength);
at(Place(src_ls.neighborListSend(i))) @Uncounted async {

val dst_ls = localState();

val sender = dst_ls.getNeighborNumber(sourceId);

Rail.copy(data, 0, dst_ls.recvBuffers(sender), 0, data.size);

atomic dst_ls.neighborsReceivedCount++;
}
3
3

// Wait for all boundary data to be received from neighboring places,
// and then combine it with boundary data computed at this place.

public final def waitAndCombineBoundaries() {
val 1s = localState();

when (ls.neighborsReceivedCount == ls.neighbotListRecv.size) {

val dom = 1s.domainPlh();
for (i in 1s.recvBuffers.range) {

dom.accumulateBoundaryData(ls.recvBuffers(i), ls.recvRegions(i), ls.accessFields, ls.sidelLength);

}
1s.neighborsReceivedCount = 0;
}
}

Figure 1: Code snippets illustrating the exchange of ghost regions using the GhostManager. The top snippet shows the application invocation
of the send and receive operations of the GhostManager. The middle snippet uses the at, async, and atomic constructs to asynchronously
send ghost data to the neighboring places. The bottom snippet uses when to wait for ghost data to be received from all neighboring places.

tents of data (which was automatically captured and copied
by the implementation of at to the destination place) into a
pre-allocated receive buffer at that place. Line[I8]atomically
increments a count of ghost regions received by the desti-
nation place. After sending all of its data, a place invokes
waitAndCombineBoundaries. At line the when statement
suspends the executing task until it has received updates
from all its neighbors (the dual of the increment at line [T8).
The remainder of the method scatters the received data into
the simulation data structures encapsulated in the Domain
class.

Although succinct and idiomatic, the straightforward at-
based communication does result in an extra memory allo-
cation and corresponding data copy operation in both the
sending and receiving places. This happens because the im-
plementation of at serializes all of the values captured by
the at’s body (sourceld, data) into a message buffer at

the sending place and deserializes them into the program
heap at the receiving place. Figure 2] shows how this over-
head can be eliminated by using an advanced aspect of the
x10.1lang.Rail API: support for direct one-sided bulk data
transfer from one place to another via the asyncCopy and
uncountedCopy methods. Because the ghost regions being
exchanged are fairly large, this purely local optimization
eliminates several gigabytes of temporary memory alloca-
tion and copying overhead per place and yields an 11% over-
all improvement in LULESH performance.

On network transports that support RDMA, the X10
runtime system internally implements the asyncCopy and
uncountedCopy operations of Rail using RDMA. We exper-
imented with implementing these operations using MPI-3
RMA operations. However, we found that on the Cray XE6
system we were using, actually using RMA operations to im-
plement the ‘put’ variant of uncountedCopy that is heavily

2015/10/30



1
2
3
4
S
6
7
8
9

public def gatherBoundariesToCombine() {
val src_ls = localState();
val sourceDom = src_ls.domainPlh();
val sourceld = here.id;
for (i in src_ls.neighborListSend.range) {
val data = src_ls.sendBuffers(i);

sourceDom.gatherData(data, src_ls.sendRegions(i), src_ls.accessFields, src_ls.sideLength);
Rail.uncountedCopy(data, 0, src_ls.remoteRecvBuffers(i), 0, data.size, (Q=> {

val dst_ls = localState(Q);
atomic dst_ls.neighborsReceivedCount++;

b;

Figure 2: Optimization of ghost data exchange by replacing the at(...) @Uncounted async statement shown in lines of Figure
by a call to the one-sided bulk transfer method Rail.uncountedCopy. The optimization is purely local; no source code changes outside of

this code snippet are required.

used in our LULESH code degraded performance by 15%
vs. our original implementation that emulated an RDMA
put using vanilla ISend/IRecv operations. In future work, we
would like to further explore this result on a wider range of
MPI-3 implementations.

4.2 Enhanced Collective Operations

The X10 runtime is designed to be deployed on a wide range
of distributed systems and adapts to a number of network
transports including TCP/IP, versions of MPI, and IBM’s
PAMI transport.

HPC systems and transports provide advanced commu-
nications primitives such as collective operations that are
critical to scalable performance. Collectives are made avail-
able in X10 through the x16.util.Team API which supports
operations such as Barrier, Broadcast, and AllReduce over
groups of places (x10.1lang.PlaceGroup). The X10 runtime
maps these collectives to the corresponding transport APIs
when available or emulates them using point-to-point mes-
sages.

The MPI adapter for X10 was originally developed for
MPI-2. While MPI collectives perform and scale better than
our emulation, this adapter could not fully support the AP-
GAS programming model in X10 because MPI-2 collectives
are blocking calls. Concurrent tasks in the same X10 place
must be able to interact independently with the network and
make progress irrespective of pending collective operations
in other tasks. In practice, programmers had to funnel all
communications through one master task in each place to
make use of this transport.

To better support X10 on MPI, we have introduced a new
MPI-3 adapter. By using MPI-3 non-blocking collectives for
Barrier, AllReduce and so on, we can directly support ap-
plication codes such as LULESH which naturally overlap
remote task invocations (ghost region exchanges) and col-
lective operations (reductions).

4.3 Scheduling Local Parallel Iterations

The reference version of LULESH 2 exploits multithreaded
parallelism using OpenMP. A total of 38 loops are paral-
lelized using the parallel worksharing directive #pragma
omp parallel for. Several of these loops include the nowait
specifier, meaning that a compiler may choose to fuse these
loops with subsequent loops. In the X10 version of the code,
we chose to fuse these loops, as well as others (numbered
18-20 and 21-31 and 33-34). (These fusions could also be
applied to the OpenMP reference code.)

In a previous paper, Milthorpe [8]] presented the foreach
statement, an efficient mechanism for parallel iteration in
X10. We used foreach to parallelize 34 out of the 38 loops.
The remaining loops (numbered 0 and 9-11 in figure[3) were
too small to profit from parallel execution with foreach.

The foreach library implements various strategies for di-
viding work along an iteration space into multiple indepen-
dent tasks that can be scheduled in parallel by the X10 run-
time. It relies on X10’s finish construct to detect the ter-
mination of the loop. The X10 runtime uses work stealing
to schedule the tasks, which is efficient—low overhead—
and effective—high utilization—but does not permit con-
trolling task affinity, e.g., mapping the same iteration sub-
spaces to the same cores across loop nests. To investigate,
we implemented a separate scheduler just for foreach. It
provides a fixed-sized thread pool, thread binding, deter-
ministic mapping from iteration subspaces to threads, and
lightweight synchronization barriers. While in theory, this
scheduler could perform a little better than X10’s work-
stealing scheduler at the expense of generality, we did not
observe a significant performance advantage. All the exper-
imental results in this paper therefore rely on X10’s default
scheduler.

We ran both the C++/OpenMP and the X10 versions of
LULESH for a 40° mesh on an Intel Ivy Bridge-EP Xeon
E5-4657L v2@2.4 GHz. The machine has four sockets, each
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Figure 3: LULESH parallel loop scaling on Ivy Bridge-EP: X10 vs. C++/OpenMP.

with 12 cores. Figures[3(a)|and [3(b)|show scaling with num-
ber of threads for the C++/OpenMP and X10 codes respec-
tively, for each of the 38 loops. “Total thread time’ is the sum
of thread times across all threads; in this plot, perfect paral-
lel efficiency would result in a constant total thread time for
increasing number of threads.

Overall, the X10 code was faster for a single thread
(98.0' s compared to 106.3 s), and exhibited superior speedup
with increasing number of threads. In particular, the major
loops (2: IntegrateStressForElems, 5-6: CalcHourglassCon-
trolForElems and 14: CalcKinematicsForElems) all exhibit
near-constant total thread time in X10. In contrast, the total
thread time for loops 2, 5 and 6 all increase rapidly with
number of threads in the C++/OpenMP version, indicating
a loss of parallel efficiency. Loops 37 and 38 exhibit signif-
icantly worse scaling for X10 than for C++/OpenMP, due
to poor locality between these loops and the earlier loops
(14,15,21) that write the data they require. However, the to-
tal runtime of loops 37 and 38 is small compared to other
loops in the application.

5. Performance At Scale

To evaluate the overall performance of the X10 LULESH
code, we utilized a Cray XE6 system at NERSC called
Hopper. Each Hopper compute node consists of two twelve-
core AMD ‘MagnyCours’ 2.1 GHz processors and 32 GB of
memory. The 24 cores in a compute node are grouped into 4
NUMA domains with a shared 6 MB L3 cache. For all of our
experiments, we scheduled one place (MPI rank) per NUMA
domain. Thus each place had 6 cores available for use by
the multithreaded parallelism constructs discussed in the
previous section. We performed weak-scaling experiments;
each place was assigned 64,000 elements (40%). The primary
metric is ‘Grind Time’, a measurement of the per-element

compute time that is reported by the LULESH application.
Lower Grind Times represent better performance (less time
taken per unit of work). All data points represent the median
of 5 runs; run-to-run variation at the same configuration was
less than 2%.

Figure ] shows the overall performance of the X10 and
C++/OpenMP/MPI implementations of LULESH as we
scaled the number of cores from 6 (1 place) to 24,576 (4,096
places). At all problem sizes, X10 achieved better perfor-
mance than the C++/OpenMP/MPI reference version of the
code. Single-place performance was 26% better. As the ex-
periments reached more realistic scales, the performance gap
was approximately 10% (with an exception at 1,728 places
where the gap was only 4% it otherwise ranged from 8% to
12% over all measurements between 125 to 4,096 places).

1.4
1.2ﬁ?/*_f_‘
!
N
Sos
g
= 06
o - X10
£ 04
©) —o— C++/OpenMP/MPI
0.2
0
0 5000 10000 15000 20000 25000

Cores (6 cores per Place/Rank)
Figure 4: LULESH performance on Hopper (Cray XE6) from 6—
24,576 cores (1-4,096 places). Lower ‘Grind Time’ is better.

Table [T] reports on the parallel speedup within a single
place by comparing single-threaded performance (where
X10 and OpenMP are restricted to using a single worker
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thread per place) to that of the peak configuration (five
worker threads per 6 core place). Compared to their own
single-threaded versions, multithreaded X10 achieved a 3.77
times speedup and multithreaded OpenMP achieved a 3.31
times speedup. The speedup shown in Table [[| was measured
for runs using 27 places.

Grind time (us/z/c) Speedup
1 thread 5 threads
X10 3.28 0.87 3.77x
C++/OpenMP/MPI 3.47 1.05 3.31x

Table 1: LULESH multithreaded speedup on Hopper.

6. Conclusion

The X10 implementation of LULESH represents the first
large-scale performance evaluation of an X10 application
exploiting both single-node (multithreaded) and multi-node

(distributed) parallelism. The X10 implementation was roughly

10% faster than the reference C++/OpenMP/MPI imple-
mentation and exhibited good scaling up to 4,096 places
(24,576 cores). The X10 code was also more concise, with
only 2,730 lines of code compared to 4,750 lines for the
reference implementation.

Our improvements to collective support in the X10 run-
time have broad applicability to other scientific codes.
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