
Evaluating the Performance Portability of
Contemporary SYCL Implementations
Beau Johnston

Oak Ridge National Laboratory, and
Australian National University

johnstonbe@ornl.gov

Jeffrey S. Vetter
Oak Ridge National Laboratory

vetter@computer.org

Josh Milthorpe
Australian National University

josh.milthorpe@anu.edu.au

Abstract—SYCL is a single-source programming model for
heterogeneous systems, which promises improved maintainability,
productivity, and opportunity for compiler optimization, when
compared to programming models like OpenCL and CUDA.
Several implementations of the SYCL standard have been de-
veloped over the past few years, including several backends into
contemporary accelerator languages, like OpenCL, CUDA, and
HIP. These implementations vary wildly in their support for
specific features of the standard and in their performance. As
SYCL grows in popularity, developers need to know how features
are implemented across popular implementations in order to
make proper design choices.

In this paper, we evaluate the existing SYCL implementations
across a range of hardware and prominent SYCL features to
understand SYCL’s performance portability. This work uses the
newest SYCL benchmark suite (SYCL-Bench) to evaluate all
four existing implementations, comparing support of language
features between backends, and highlighting those that are
missing or performing poorly. We offer a detailed evaluation
of the major SYCL parallel constructs in the context of a matrix
multiplication benchmark. Our results show that basic kernel
parallelism is the best choice for performance on current SYCL
implementations, and identify opportunities for improvement in
several of the target SYCL runtimes.

I. INTRODUCTION

SYCL [2] is a single-source programming model for hetero-
geneous systems, managed as an open standard by the Khronos
Group. The benefit of SYCL, as compared to programming
models like OpenCL [1] and CUDA [10], is that it offers
a single-source approach which can improve maintainability,
productivity, and overall opportunity for downstream compiler
optimizations. In fact, SYCL sits as a higher level of abstrac-
tion, offering backend implementations to most contemporary
accelerator languages, like OpenCL, CUDA, and HIP. Many
of these earlier approaches required kernel and host code
to be separate. This SYCL standard guarantees functional
equivalence of features across compliant implementations but
it does not prescribe how the underlying features should be
implemented (unlike standards like MPI [12] or OpenCL).

Over the past few years, several implementations of this
SYCL standard have emerged: DPC++ [6], ComputeCpp [4],
triSYCL [9], and hipSYCL [3]. Each implementation sup-
ports multiple specific accelerator devices and may therefore
employ a distinct backend for each device. These backends
can be viewed as other accelerator programming languages
and their associated framework – both compiler and runtime.

SYCL Source Code

DPC++
(Intel oneAPI)

ComputeCPP
(codeplay)

triSYCL
(XILINX)

hipSYCL
(Univesität Heidelberg)

Any CPU

OpenCL +
SPIR-V

CUDA + PTX OpenCL + PTXAny CPU

OpenCL +
SPIR(-V)

OpenMP

OpenCL +
SPIR/LLVM

OpenMP CUDA

ROCm

Any CPU

AMD GPUs

NVIDIA GPUs

XILINX FPGAs
POCL

Any CPUNVIDIA GPUsNVIDIA GPUs

Intel CPUs
Intel GPUs
Intel FPGAs

Intel CPUs
Intel GPUs
Intel FPGAs
AMD GPUs

Fig. 1: Current SYCL implementations and their correspond-
ing API backends.

For instance, ComputeCpp targets an OpenCL backend while
DPC++ also offers a CUDA and PTX backend. Figure 1
shows a comprehensive view of the implementation-to-device
relationships. A dashed line indicates experimental support.

Our goal in this effort is to understand the performance
portability [5], [11] of SYCL, and, in particular, the perfor-
mance portability of individual SYCL features across these im-
plementations. This information will be valuable to developers
of both applications and SYCL implementations. First, as users
create their applications, it is important for them to understand
the performance implications of different features and design
patterns in SYCL. As is the case with other programming
systems, new language abstractions oftentimes obfuscate how
application code is mapped to the heterogeneous system.
SYCL is no different. Second, as SYCL implementation devel-
opers create and optimize their SYCL implementations, they
need to understand how applications will use these features.
More importantly, the applications can reveal how individual
SYCL features are combined and how they are used with data
structures and other non-SYCL language features that may
promote or inhibit good performance.

We make the following contributions:
1) We use 38 benchmarks from the SYCL-Bench suite to

evaluate the functionality of four SYCL implementations
(i.e., DPC++, ComputeCpp, triSYCL, hipSYCL) that
target multiple backends/devices (i.e., CUDA, CPU,
OpenCL, OpenMP, ROCm).

2) Our results reveal the performance portability of specific
features of SYCL: basic data-parallel kernels, work-
group data-parallel kernels, hierarchical data-parallel

mailto:johnstonbe@ornl.gov
mailto:vetter@computer.org
mailto:josh.milthorpe@anu.edu.au

kernels, single-task kernels, and synchronization.
3) We perform a detailed evaluation of the major SYCL

parallel constructs in the context of a matrix multiplica-
tion benchmark, and show that basic kernel parallelism
is the best choice for performance on current SYCL
implementations.

We offer a Dockerhub image [7] and Dockerfile with Jupyter
artifact [8] for interpretable results.

II. METHODOLOGY

We followed a number of steps in order to understand the
performance portability of SYCL across a range of hardware
and SYCL implementations.

First, we identified the main features of SYCL available
to users for developing applications. At the highest level, we
can use basic timing information to characterize application
performance, however, this will be determined by the perfor-
mance of particular parallel constructs defined in the SYCL
standard. These parallel constructs are: basic data-parallel
kernels (BPK), work-group data-parallel kernels (WGP), hier-
archical data-parallel kernels (HDP), single-task kernels (task),
and synchronization (sync). Ideally, users would see these
features performing similarly across SYCL implementations
and similar hardware. Practically, however, we expect SYCL
implementations to be optimized for specific workloads and
hardware that may show dramatically different performance
variability. Second, we gathered and surveyed 38 SYCL ker-
nels (see Table I) to tally which features of SYCL they were
built on. Third, we surveyed, installed, and evaluated our 38
kernels across the implementations of SYCL and supported
hardware (see Figure 1). Fourth, we identified and investigated
differences in the kernels and SYCL features across these im-
plementations and devices. In most cases, we had to dive into
the underlying SYCL implementation using appropriate tools
to understand the realized performance differences. Finally, we
tried to extract some common lessons from a) the use of SYCL
constructs for performance portability, and b) the impact of
SYCL implementation designs on performance portability.

III. SYCL IMPLEMENTATIONS

In response to the SYCL specification, several teams have
developed SYCL implementations for multiple target archi-
tectures and underlying programming systems (e.g., CUDA,
OpenCL, OpenMP). In addition, several implementations have
added proprietary extensions to SYCL to exploit specific
architectural features, which may not be efficiently exploitable
via the specification. In this work, we focus strictly on the stan-
dard SYCL features of these implementations. Furthermore,
we only examine non-experimental backends; resulting in a
comparison between 9 different SYCL runtimes.

This section identifies which of the applications functionally
compile and run on each of the SYCL implementations over
all available backends. Table I shows the compilation and
running status of each SYCL-Bench application evaluated on
contemporary SYCL implementations.

Overall, we found that most of our applications built and
ran successfully; however we were unable to successfully
build against the DPC++ OpenCL backend, thus we only
evaluate 8 out of the 9 contemporary/non-experimental SYCL
backends. ComputeCpp offer two backends, namely, pthreads
and OpenCL. hipSYCL has three separate backends: OpenMP
for CPU devices, CUDA for Nvidia devices and ROCm for
AMD devices. TriSYCL is a header-only SYCL framework,
which requires no compilation of dependencies but can only
be evaluated on CPUs or architectures which support OpenMP
or Thread Building Blocks as programming models. Our eval-
uation focuses on SYCL v1.2.1, and uses the implementations
from the GitHub hosted versions of DPC++ (git commit:
24726df), hipSYCL (5352add), TriSYCL (b97c97a), and the
ComputeCpp CE [4] binary known as “ubuntu-16.04-64bit”.
For reproducibility, we provide a Docker image[7] with our
build of SYCL-Bench with the four implementations of SYCL.

IV. SYCL PARALLELISM CONSTRUCTS

Since one of the major features of SYCL is parallelism,
we focus on the parallelism constructs used in SYCL-Bench
applications. In particular, we examine the diversity of par-
allelism expressed in SYCL kernels from the perspective of
how they are queued and interact in the SYCL-Bench(mark)
suite. We refer to this as the “parallel construct”. SYCL [2]
(3.6.1-3.6.5) offers five different parallel constructs, namely,

1) Basic data parallel kernels,
2) Work-group data parallel kernels,
3) Hierarchical data parallel kernels,
4) Single Task kernels, and
5) Synchronization.

We examine which of these SYCL parallel constructs are
used in each application and later –Section V– use this to
decompose application performance into pertinent parallel
constructs. Given the complexity of C++ code transformations
across SYCL implementations, we simply counted the number
of times a construct was used in each application’s source code
(independent of the implementation).

Here, we use the notation app (n) to indicate that a keyword
appears n times in the source code of application app. For
instance, “nbody (1)” means the nbody source code contains
the feature of interest –parallel_for– once.

A. BPK – Basic data-parallel kernels

Kernels are executed as multiple work-items and are en-
queued with parallel_for where a range argument is
provided to specify the global size of work to be done. The
partitioning into work-groups is determined by the SYCL
implementation/runtime. No synchronization/barrier events are
supported when using this construct.

In the SYCL-Bench suite, we identify 28 applications
which use only basic data-parallel kernels and do not use the
other optimized/advanced parallel constructs outlined in the
remainder of this Section.

TABLE I: Status of SYCL-Bench applications on modern SYCL implementations.

Application DPC++
(CUDA) DPC++ (CPU) DPC++

(OpenCL)
ComputeCpp

(CPU)
ComputeCpp

(OpenCL)
triSYCL

(OpenMP)
hipSYCL

(CPU)
hipSYCL
(CUDA)

hipSYCL
(ROCm)

2DConvolution m m m m m m m
2mm m m m m m m m
3DConvolution m m m m m m m
3mm m m m m m m m
DRAM ! m m m m m
arith m m m m m m
atax m m m m m m m m
bicg m m m m m m m m
blocked transform m m m m 7 m m m
correlation m m m m m m m m
covariance m m m m m m m m
dag task throughput independent m m m m m m m m
dag task throughput sequential m m m m m m m m
fdtd2d m m m m m m m m
gemm m m m m m m m
gesummv m m m m m m m m
gramschmidt m m m m m m m m
host device bandwidth ! m m 7 m m m
kmeans m m m m m m m m
lin reg coeff m m m m m m m
lin reg error m m m m m m m m
local mem m m m m m m m
matmulchain m m m m m m m
median 7 m m m 7 7 7 m
mol dyn m m m m m m m m
mvt m m m m m m m m
nbody 7 m m 7 m m m
pattern L2 m m m m m m m m
reduction m m m 7 m m m
scalar prod m m m m m m m
segmentedreduction m m m m m m m
sf 7 m m m m m m m
sobel 7 7 7 m m 7 m m m
sobel5 7 7 7 m m 7 m m m
sobel7 7 7 7 m 7 m m m
syr2k m m m m m m m
syrk m m m m m m m
vec add m m m m m m m m

7 indicates a failed compilation, blank entries aborted or returned a non-zero return-code, ! did not abort but PI CUDA threw an error, m success on a trial run

B. WGP – Work-group data-parallel kernels
Kernels are executed in user-defined dimensions – the global

work-times are divided and executed in pre-defined groups.
Again, the parallel_for function is used, and the global
range argument is used for the global size of work-items to
executed but a second argument specifying the range of each
work-group size is also required. Synchronization is allowed.

Applications which have been written to use work-groups
use a combination of get_local_id, get_local_size
and get_local_linear_id functions called from within
the kernel for local indexing. When searching for explicit use
of these functions we see that six of the 37 applications use
this construct: nbody (1), local mem (1), lin reg coeff (1),
scalar prod (2), reduction (2), segmentedreduction (2).

C. HDP – Hierarchical data-parallel kernels
SYCL provides compiler support for expressing hierarchical

data parallelism, which maps to the same basic execution
model as work-group data-parallel kernels. A range is provided
to the following enqueuing functions to specify the number of
work-groups to launch and an optional size of each work-
group:
parallel_for_work_item : Use of this function in

the suite indicates there has been an attempt made to optimize
the application to use private memory. This corresponds to the
lowest level cache / smallest-fastest memory on the accelerator.
Six applications use parallel_for_work_item, namely,
dag task throughput independent (1), dag task throughput
sequential (1), nbody (4), scalar prod (4), segmentedreduction
(3) and reduction (3).

parallel_for_work_group : Presents a degree of
optimization around the use of local memory, because all vari-
ables declared in this scope are allocated in work-group local
memory. The same applications that use parallel_for_
work_item also use parallel_for_work_group. The
number of times they are used differ; dag task throughput
independent (1), dag task throughput sequential (1), n-body
(1), scalar prod (2), segmentedreduction (1) and reduction (1).

D. Task – Single-Task Kernels

A kernel is executed once, on a single compute-unit, in one
work-group, as one work-item; these kernels can be executed
on multiple devices and queues and encompass task-based
parallelism. It is used with the single_task function. In
the suite, three applications use this construct; dag task
throughput sequential (1), dag task throughput independent
(1) and host device bandwidth (1). However, host device
bandwidth submits a no-op single task to force a read-only
buffer to be copied in the microbenchmark, since this kernel
does no work it is omitted from the evaluation.

E. Sync – Synchronization

In general, operations between the host and the device
require synchronization such as buffer destruction, host ac-
cessors, command group enqueue, queue operations, etc. We
focus on user-controlled synchronization events: those that
occur within kernel execution, either globally or locally within
a work-group. The barrier function is used inside kernels to
synchronize between work-items in a work-group. It appears
in six of the 37 kernels: reduction (1), segmentedreduction (1),

TABLE II: Parallel constructs of SYCL-Bench applications.

Application BKP WGP HDP Task Sync

2DConvolution 1
2mm 2
3DConvolution 1
3mm 3
DRAM 1
arith 1
atax 2
bicg 2
blocked transform 1
correlation 5
covariance 3
dag task throughput independent 1 1 2 1
dag task throughput sequential 1 1 2 1
fdtd2d 3
gemm 1
gesummv 1
gramschmidt 3
host device bandwidth 2 1
kmeans 1
lin reg coeff 2 2
lin reg error 1
local mem 1 2
matmulchain 1
median 1
mol dyn 1
mvt 2
nbody 1 5 2
pattern L2 1
reduction 2 4 1
scalar prod 2 5 2
segmentedreduction 2 4 1
sf 1
sobel 1
sobel5 1
sobel7 1
syr2k 1
syrk 1
vec add 1

lin reg coeff (2), scalar prod (2), nbody (2), local mem (2).
lin reg coeff, scalar prod and local mem request a local_
space fence –synchronization within a work-group– whereas
reduction, segmented reduction and nbody use the default
global barrier. NDRange versions of these kernels are the ones
which contain barriers – the hierarchical variations do not. The
nbody kernel contains two barriers in the same invocation,
as does local mem. reduction contains one barrier in the
innermost loop of the NDRange implementation.

F. Overview

Table II shows an overview of SYCL-Bench applications
sorted by type of parallel constructs with corresponding counts
to denote the number of times each construct occurs in the
given application. An empty entry shows that the application
does not use the construct. Note, the HDP value is the sum of
both parallel_for_work_item and parallel_for_
work_group function occurrences within each application.

V. EVALUATION RESULTS

Having determined the pairing of applications supported by
current SYCL implementations (Section III) and the available
parallelism expressed in each of the SYCL-bench applications
(Section IV), we now present a comparison of execution times
of SYCL-Bench applications on a range of accelerator devices.
The set of accelerators used in this study is presented in
Table III. The compiler used was Clang (LLVM-9.0.1) and the
Docker image is based on Ubuntu-18.04. Runtime backends
used include CUDA v10.1, ROCm v3.7, Intel’s OpenCL (l
opencl p 18.1.0.015) CPU driver and OpenMP v5.0.1.

The results are presented from three different views:
1) implementations: presents a comprehensive list of SYCL

implementations with backends, and evaluates the level
of support for SYCL constructs and features using
SYCL-Bench applications;

2) application-level parallelism: examines the SYCL execu-
tion context including key features of kernel execution
and methods for expressing parallelism. We scanned the
source code of each SYCL-Bench application for SYCL
abstractions that are recognizable to users and to the
compiler/runtime implementation; and

3) performance, which presents execution times of SYCL-
Bench applications to serve as a basis for comparison
between accelerators.

A. Matrix Multiplication

We illustrate our methodology on a well-known matmul
benchmark, which multiplies two 10242 matrices. We started
with the SYCL matmulchain benchmark and modified it by
removing the chaining of matrices to form the initial basic
kernel parallelism (BKP) version and two additional versions
using work-group parallelism (WGP) and hierarchical data-
parallelism (HDP); task-based parallelism was not assessed.
We also created a serial version to serve as a baseline.
Figure 2 gives source code for the four different versions
of matmul. The serial code is a simple triply-nested loop
over the indices [i,j,k] of the input matrices. In the basic
kernel parallel version, each work item computes a single
element [i,j] of the output matrix by iterating over an entire
row of matrix A and column of matrix B. The work-group
parallel version is similar, with the addition of a specified
local work-group size as a cl::sycl::range. Finally,
the hierarchical data-parallel version explicitly specifies the
number of work-groups. Note that WGP and HDP versions
do not take advantage of local memory to share elements of
the input matrix between work-items in the same work-group,
as the purpose of this benchmark is to compare the overhead
of implementations of the different execution constructs.

This experiment takes a fixed problem size of 10242 floating
point (32-bit) elements and adjusts the local work-group size in
increments from 20 to 210. Four different SYCL CPU runtimes
were evaluated using the matmul benchmark to compare how
the three major parallel constructs affect performance on the
same Gold CPU, NVIDIA P100, and AMD gfx906 GPU. We
compare the implementations in terms of raw performance,
their support for these different SYCL constructs, and to
assess whether doing optimization in SYCL transforms into a
performance improvement. In particular, this test was devised
to assess core utilization on the system based on the way
parallelism is both expressed and supported over contemporary
SYCL implementations.

Each test was executed 100 times to give a large statistical
sample size. Execution times and cache-misses were collected
–via std::chrono::duration and perf respectively–
to help explain the results. We also used top to validate CPU
core usage. The results presented in Figure 3 are separated

TABLE III: Hardware used in the evaluation.

Alias Name Type Vendor Core Count Compute Units Memory Processor Clock Memory Clock TFLOPS

Gold Xeon Gold 6134 CPU Intel 32 32 25MB (L3) 3.2-3.7GHz 10.4 3.2-3.8
P100 Tesla P100 GPU NVIDIA 3584 56 12GB 1.1-1.3GHz 1.4 8.1–9.3

gfx906 Radeon VII / Vega 20 (66af) GPU AMD 3840 60 16GB 1.4-1.7GHz 2 11.1-13.8

Core Count indicates the number of hyper-threaded cores on the Gold, CUDA cores on the NVIDIA P100, and Unified Shaders on the AMD gfx906.
Compute Units offers a comparison between significantly different architectures by showing the available Compute Units available in the OpenCL setting.
Processor Clock indicates the base clock frequency and the maximum boost frequency.
Memory Clock speed is reported in terms of gigatransfers per second (GT/s).
Single-precision floating point is used for the theoretical TFLOPS.

according to the SYCL runtime –the pairing of SYCL im-
plementation and backend– for instance, hipSYCL-OpenMP
and hipSYCL-CUDA are separate SYCL runtimes. Each plot
presents the time to perform matrix-multiplication on two
10242 matrices over an increasing x-axis corresponding to
local work-group sizes; this offers a comparison among the
3 different SYCL parallel constructs and demonstrates how
absolute performance varies. Only the HDP and WGP modes
support explicitly setting the work-group size and so they are
the only results with multiple data-points per parallel construct.
As the work-group size for BKP kernels is determined by the
implementation, not the developer, it is shown as 20th in all
plots. Also, since the serial implementation conceptually has
one large work-group, both Serial and BKP are placed side-
by-side at work-group size 1, as points of comparison against
WGP and HDP versions. Some data-points are missing due to
those SYCL runtimes not supporting larger work-group sizes.

The median Serial runtime is included as a turquoise dashed
line at 4.6 seconds and was computed over all SYCL runtimes
since the same host-CPU –the Xeon Gold 6134– was used on
all systems.The only significant variations from this median
runtime were the DPC++ SYCL implementations. Specifically,
Serial matmul versions on both the DPC++ pthreads and
DPC++ CUDA SYCL runtimes are ≈0.6 seconds faster than
other SYCL versions despite being executed on the same Gold
CPU, because the timing loop queries the SYCL framework
to synchronize with a call to wait_and_throw() and this
function performs faster on DPC++ than the other three SYCL
implementations when querying an empty execution queue.

While both the ComputeCpp and DPC++ implementations
offer SYCL support on the host device, they only offer single-
core execution, and thus all execution times are unchanged by
increasing the work-group sizes. In general, using the host
device on the ComputeCpp SYCL implementation offers no
better performance than running on a single core. It is inter-
esting that the WGP construct on the ComputeCpp-pthreads
runtime –which a programmer might expect to provide op-
portunity for performance optimization – performs equal or
worse than the other constructs for all work-group sizes.
This is explained by the high cache-miss percentage inherent
to the WGP construct where work-groups are scheduled for
execution in a random/strided order, rather than in sequence
which would lead to better cache reuse.

The DPC++ implementation, while only offloading to one-
core/p-thread to perform the kernel execution on the host
platform, uses an additional host thread to monitor completion.

There is little difference between these parallel constructs in
either execution time or cache miss percentage.

Both hipSYCL and triSYCL allow parallel execution on
the host device via OpenMP backends. Almost all parallel
constructs on hipSYCL –excluding the WGP @1 Local Work-
Group Size– perform better than the baseline Serial code. The
WGP code performs significantly worse than the HDP variant,
which is the only example of a local work-group size offering
better performance than BKP – this is only slight with the
HDP @ a local work-group size of 32 being ≈18 ms faster.
Some GPU runtimes may show a marginal improvement at
the largest work-group size, however this trade-off comes at
larger sizes crashing entirely due to hitting the hardware limit
support for those sizes. However, the potential benefit of using
HDP must be weighed against the risk of incorrectly setting
this size, which can affect the performance by an order of
magnitude –this corresponds to offering an insufficient level
of parallelism to occupy all cores. Regarding scaling, the
Intel Xeon Gold 6134 Skylake processor sports 32 hyper-
threaded/16 physical cores, and when we compare against
the baseline Serial code, both BKP and HDP show roughly
a 13-14x speedup, while WGP has at best a 7x speedup
(for work-group size 4). Work-Group Parallelism in SYCL
is the worst on all implementations. In general, BKP offers
the best performance over these four implementations, which
is perhaps surprising as it is the simplest and most abstract
SYCL version of this kernel.

WGP achieves a speedup at a work-group size of 4 of almost
9x compared to the Serial code. However, BKP is again by far
the best performer at almost 19x faster than the serial baseline,
it offers good core saturation with sufficient memory/cache-
line reuse and utilizes the 32 HT cores.

The ComputeCpp OpenCL backend performed best on the
Gold, an order of magnitude faster than the OpenMP versions
for all parallel constructs –excluding some smaller HDP work-
group sizes, which were comparable. The execution time of
HDP is similar to that on hipSYCL OpenMP for work-group
sizes 1,2,4, and 8 taking around 250ms, improving to ≈25ms
for larger work-group sizes. WGP follows a similar trend
starting off at ≈250ms for a work-group size of 1, and all
other data-points flat-line at ≈25 ms over the work-group sizes
2-64. BKP experiences similar execution times (≈26ms) to the
larger –and best configured– work-group sizes of WGP and
HDP constructs.

All GPU runtimes offer shorter execution times than the
Gold CPU, and the parallel constructs exhibit similar trends,

, , , , , , , , , , , ,/ / s e r i a l
, , , , , , , , , , , ,t e m p l a t e <typename T>
, , , , , , , , , , , ,vo id m u l t i p l y (s t d : : v e c t o r<T>& a , s t d : : v e c t o r<T>& b , s t d : : v e c t o r<T>& c , c o n s t s i z e t

↪→ m a t s i z e) {
, , , , , , , , , , , ,f o r (s i z e t i = 0 ; i < m a t s i z e ; ++ i){
, , , , , , , , , , , ,f o r (s i z e t j = 0 ; j < m a t s i z e ; ++ j){
, , , , , , , , , , , , a u t o sum = 0 ;
, , , , , , , , , , , , f o r (s i z e t k = 0 ; k < m a t s i z e ; ++k) {
, , , , , , , , , , , , c o n s t a u t o a i k = a [i ∗ m a t s i z e + k] ;
, , , , , , , , , , , , c o n s t a u t o b k j = b [k ∗ m a t s i z e + j] ;
, , , , , , , , , , , , sum += a i k ∗ b k j ;
, , , , , , , , , , , , }
, , , , , , , , , , , , c [i ∗ m a t s i z e + j] = sum ;
, , , , , , , , , , , ,}
, , , , , , , , , , , ,}
, , , , , , , , , , , ,}
, , , , , , , , , , , ,
, , , , , , , , , , , ,/ / b a s i c k e r n e l p a r a l l e l i s m
, , , , , , , , , , , ,t e m p l a t e <typename T>
, , , , , , , , , , , ,vo id m u l t i p l y (c l : : s y c l : : queue& queue , c l : : s y c l : : b u f f e r<T , 2>& mat a , c l : : s y c l : :

↪→ b u f f e r<T , 2>& mat b , c l : : s y c l : : b u f f e r<T , 2>& mat c , c o n s t s i z e t m a t s i z e
↪→) {

, , , , , , , , , , , ,queue . s ubm i t ([&] (c l : : s y c l : : h a n d l e r& cgh) {
, , , , , , , , , , , ,a u t o a = mat a . t e m p l a t e g e t a c c e s s<c l : : s y c l : : a c c e s s : : mode : : read>(cgh) ;
, , , , , , , , , , , ,a u t o b = mat b . t e m p l a t e g e t a c c e s s<c l : : s y c l : : a c c e s s : : mode : : read>(cgh) ;
, , , , , , , , , , , ,a u t o c = mat c . t e m p l a t e g e t a c c e s s<c l : : s y c l : : a c c e s s : : mode : : d i s c a r d w r i t e >(

↪→ cgh) ;
, , , , , , , , , , , ,
, , , , , , , , , , , ,cgh . p a r a l l e l f o r<c l a s s MatmulBKP<T>>(
, , , , , , , , , , , , c l : : s y c l : : range<2>(ma t s i z e , m a t s i z e) ,
, , , , , , , , , , , , [=] (c l : : s y c l : : i tem<2> i t em) {
, , , , , , , , , , , , a u t o sum = 0 ;
, , , , , , , , , , , , f o r (s i z e t k = 0 ; k < m a t s i z e ; ++k) {
, , , , , , , , , , , , c o n s t a u t o a i k = a [{ i t em [0] , k}] ;
, , , , , , , , , , , , c o n s t a u t o b k j = b[{k , i t em [1]}] ;
, , , , , , , , , , , , sum += a i k ∗ b k j ;
, , , , , , , , , , , , }
, , , , , , , , , , , , c [i t em] = sum ;
, , , , , , , , , , , ,}) ;
, , , , , , , , , , , ,}) ;
, , , , , , , , , , , ,}
, , , , , , , , , , , ,
, , , , , , , , , , , ,/ / work−group p a r a l l e l i s m
, , , , , , , , , , , ,t e m p l a t e <typename T>
, , , , , , , , , , , ,vo id m u l t i p l y (c l : : s y c l : : queue& queue , c l : : s y c l : : b u f f e r<T , 2>& mat a , c l : : s y c l : :

↪→ b u f f e r<T , 2>& mat b , c l : : s y c l : : b u f f e r<T , 2>& mat c , c o n s t s i z e t ma t s i z e
↪→ , c o n s t s i z e t l o c a l s i z e) {

, , , , , , , , , , , ,queue . s ubm i t ([&] (c l : : s y c l : : h a n d l e r& cgh) {
, , , , , , , , , , , ,a u t o a = mat a . t e m p l a t e g e t a c c e s s<c l : : s y c l : : a c c e s s : : mode : : read>(cgh) ;
, , , , , , , , , , , ,a u t o b = mat b . t e m p l a t e g e t a c c e s s<c l : : s y c l : : a c c e s s : : mode : : read>(cgh) ;
, , , , , , , , , , , ,a u t o c = mat c . t e m p l a t e g e t a c c e s s<c l : : s y c l : : a c c e s s : : mode : : d i s c a r d w r i t e >(

↪→ cgh) ;
, , , , , , , , , , , ,
, , , , , , , , , , , ,cgh . p a r a l l e l f o r<c l a s s MatmulWGP<T>>(c l : : s y c l : : nd range<2>(
, , , , , , , , , , , , c l : : s y c l : : range<2>(ma t s i z e , m a t s i z e) ,
, , , , , , , , , , , , c l : : s y c l : : range<2>(l o c a l s i z e , l o c a l s i z e)) ,
, , , , , , , , , , , , [=] (c l : : s y c l : : nd i tem<2> i t em){
, , , , , , , , , , , , a u t o sum = 0 ;
, , , , , , , , , , , , f o r (s i z e t k = 0 ; k < m a t s i z e ; ++k) {
, , , , , , , , , , , , c o n s t a u t o a i k = a [{ i t em . g e t g l o b a l i d (0) , k}] ;
, , , , , , , , , , , , c o n s t a u t o b k j = b[{k , i t em . g e t g l o b a l i d (1) }] ;
, , , , , , , , , , , , sum += a i k ∗ b k j ;
, , , , , , , , , , , , }
, , , , , , , , , , , , c [{ i t em . g e t g l o b a l i d (0) , i t em . g e t g l o b a l i d (1)}] = sum ;
, , , , , , , , , , , , }) ;
, , , , , , , , , , , ,}) ;
, , , , , , , , , , , ,}
, , , , , , , , , , , ,
, , , , , , , , , , , ,/ / h i e r a r c h i c a l d a t a p a r a l l e l i s m
, , , , , , , , , , , ,t e m p l a t e <typename T>
, , , , , , , , , , , ,vo id m u l t i p l y (c l : : s y c l : : queue& queue , c l : : s y c l : : b u f f e r<T , 2>& mat a , c l : : s y c l : :

↪→ b u f f e r<T , 2>& mat b ,
, , , , , , , , , , , ,c l : : s y c l : : b u f f e r<T , 2>& mat c , c o n s t s i z e t ma t s i z e , c o n s t s i z e t l o c a l s i z e)

↪→ {
, , , , , , , , , , , ,queue . s ubm i t ([&] (c l : : s y c l : : h a n d l e r& cgh) {
, , , , , , , , , , , ,a u t o a = mat a . t e m p l a t e g e t a c c e s s<c l : : s y c l : : a c c e s s : : mode : : read>(cgh) ;
, , , , , , , , , , , ,a u t o b = mat b . t e m p l a t e g e t a c c e s s<c l : : s y c l : : a c c e s s : : mode : : read>(cgh) ;
, , , , , , , , , , , ,a u t o c = mat c . t e m p l a t e g e t a c c e s s<c l : : s y c l : : a c c e s s : : mode : : d i s c a r d w r i t e >(

↪→ cgh) ;
, , , , , , , , , , , ,
, , , , , , , , , , , ,s i z e t num workgroups = (m a t s i z e + l o c a l s i z e − 1) / l o c a l s i z e ;
, , , , , , , , , , , ,cgh . p a r a l l e l f o r w o r k g r o u p<c l a s s MatmulHDP<T>>(
, , , , , , , , , , , , c l : : s y c l : : range<2>(num workgroups , num workgroups) ,
, , , , , , , , , , , , c l : : s y c l : : range<2>(l o c a l s i z e , l o c a l s i z e) ,
, , , , , , , , , , , , [=] (c l : : s y c l : : group<2> group) {
, , , , , , , , , , , , g roup . p a r a l l e l f o r w o r k i t e m ([&] (c l : : s y c l : : h i tem<2> i t em) {
, , , , , , , , , , , , a u t o sum = 0 ;
, , , , , , , , , , , , f o r (s i z e t k = 0 ; k < m a t s i z e ; ++k) {
, , , , , , , , , , , , c o n s t a u t o a i k = a [{ i t em . g e t g l o b a l i d (0) , k}] ;
, , , , , , , , , , , , c o n s t a u t o b k j = b[{k , i t em . g e t g l o b a l i d (1) }] ;
, , , , , , , , , , , , sum += a i k ∗ b k j ;
, , , , , , , , , , , , }
, , , , , , , , , , , , c [{ i t em . g e t g l o b a l i d (0) , i t em . g e t g l o b a l i d (1)}] = sum ;
, , , , , , , , , , , , }) ;
, , , , , , , , , , , ,}) ;
, , , , , , , , , , , ,}) ;
, , , , , , , , , , , ,}

Fig. 2: Source code for matrix multiplication with different
SYCL execution constructs

with execution times for both WGP and HDP decreasing
as work-group size increases. Comparing the two CUDA
backends, DPC++ shows better performance for WGP than for
HDP with work-groups of the same size; whereas hipSYCL
shows similar performance between HDP and WGP. BKP
performs similarly on both DPC++-CUDA and hipSYCL-
CUDA runtimes on the P100 and seems to be equivalent to
the best work-group size setting of any other parallel construct.
The ROCm backend on the AMD gfx906 has similarly good
performance in using hipSYCL to CUDA, the same trend
is shown between parallel constructs. Performance is slightly
worse at a work-group size of 16 when compared to the P100,
however it offers the shortest execution time for this matrix
multiplication test at a 32 sized work-group. BKP performance
on the gfx906 lies between these two best-sized work-groups
of the HDP and WGP constructs.

We propose that the good performance of BKP comes from
the partitioning of tasks between cores by the underlying
framework/backend, whereas both WGP and HDP force a
particular work partitioning that may be non-optimal for the
hardware. To test this, we used perf to record the cache
misses generated by each of the SYCL parallel constructs for
the different implementations on the Gold CPU architecture, as
shown in Figure 4. We see cache misses increasing with work-
group size on all the CPU backends, up to 10% with WGP on
the ComputeCPP-pthreads runtime. The serial implementation
has the lowest miss-rate of all the versions and shows the
baseline. The added management of threads on the multi-
threaded backends –OpenMP and OpenCL– comes at the cost
of poorer cache utilization.

Figure 5 highlights how these memory accesses are mapped
when specified by the developer using SYCL parallel con-
structs. This shows a 92 matrix, in which each element is
mapped to a work-item and each colour corresponds to a
different work-group. Figure 5a) shows how work-groups set
in 2-dimensions make algorithmic sense, as they are explicitly
assigned sizes with WGP and HDP constructs, however,
when we consider caching on CPU architectures it may be
suboptimal. As a contrast, Figure 5b) shows how the BKP may
queue work-items consecutively in one dimension, and simply
partition the 81 elements by the number of cores available on
the hardware –configurable by the underlying device/language
backend. The same number of work-groups is used, but the 1D
pattern makes better use of cache due to its sequential memory
access pattern. As this toy example is scaled up in size, we can
see this access pattern is much more likely to ensure the same
cache line is used. Thus, specifying work-group blocking can
hinder accesses patterns; rather than the developer attempting
to make this optimization, we see the underlying runtimes give
good performance when left to perform work partitioning on
their devices. We see this in the performance results with BKP
kernels having approximately the best execution times of all
the parallel constructs over all the SYCL implementations, and
shows a lower cache miss.

In summary, for the matrix multiplication example, BKP is
the best choice of parallel construct, performing best on most

ComputeCPP OpenCL − Gold DPC++ CUDA − P100 hipSYCL CUDA − P100 hipSYCL ROCm − gfx906

ComputeCPP pthreads − Gold DPC++ pthreads − Gold hipSYCL OpenMP − Gold triSYCL OpenMP − Gold

2
0

2
2

2
4

2
6

2
8

2
10 2

0
2
2

2
4

2
6

2
8

2
10 2

0
2
2

2
4

2
6

2
8

2
10 2

0
2
2

2
4

2
6

2
8

2
10

2
0

2
2

2
4

2
6

2
8

2
10 2

0
2
2

2
4

2
6

2
8

2
10 2

0
2
2

2
4

2
6

2
8

2
10 2

0
2
2

2
4

2
6

2
8

2
10

0.01

0.10

1.00

10.00

0.01

0.10

1.00

10.00

Local Workgroup Size

E
xe

cu
tio

n
T

im
e

Lo
g 1

0(
s)

SYCL Parallel Construct BKP HDP Serial WGP

Fig. 3: Execution times of the SYCL runtimes to perform multiplication on two 10242 matrices presented in a log-scale;
highlighting the difference in performance of parallel constructs against a Serial baseline.

ComputeCPP OpenCL ComputeCPP pthreads DPC++ pthreads hipSYCL OpenMP triSYCL OpenMP

2
0

2
2

2
4

2
6

2
8

2
10 2

0
2
2

2
4

2
6

2
8

2
10 2

0
2
2

2
4

2
6

2
8

2
10 2

0
2
2

2
4

2
6

2
8

2
10 2

0
2
2

2
4

2
6

2
8

2
10

0

3

6

9

Local Workgroup Size

M
is

se
d

(%
)

of
 C

ac
he

 R
ef

er
en

ce
s

SYCL Parallel Construct BKP HDP Serial WGP

Fig. 4: Percentage of cache-misses occurring during 100 runs of the matrix-multiplication over the SYCL runtimes which
target the Gold CPU – showing the penalties of using different parallel constructs.

0 1 2 3

9 10 11 12

18 19 20 21

27 28 29 30

4 5 6 7 8

13 14 15 16 17

22 23 24 25 26

36 37 38

45 46 47

31 32

39 40 41

48 49 50

33 34 35

42 43 44

51 52 53

54 55 56

63 64 65

72 73 74

57 58 59

66 67 68

75 76 77

60 61 62

69 70 71

78 79 80

(a) WGP and HDP

0 1 2 3

9 10 11 12

18 19 20 21

27 28 29 30

4 5 6 7 8

13 14 15 16 17

22 23 24 25 26

36 37 38

45 46 47

31 32

39 40 41

48 49 50

33 34 35

42 43 44

51 52 53

54 55 56

63 64 65

72 73 74

57 58 59

66 67 68

75 76 77

60 61 62

69 70 71

78 79 80

(b) BKP

Fig. 5: Work-group partitioning and the corresponding mem-
ory access patterns when using different SYCL parallel con-
structs to perform matrix multiplication.

implementations while retaining a high level of abstraction.
SYCL WGP parallelism is expressed differently to HDP –in
WGP local-size indicates the number of heavyweight threads
to use, or the amount of parallelism to employ, whereas HDP
expresses the work-group size to determine the global amount
of work to do, inherent to the algorithm. Both constructs
should be used as a mechanism to add an algorithmic re-
striction on the parallelism to use, for instance, in pressure-
system weather modelling where the same task is to occur
over different resolution grids. They should not be used for
device specific optimization for two reasons:

1) It goes against the general purpose of SYCL as provid-
ing hardware-agnostic language abstractions; targeting
the expression of parallelism to a particular device
hinders performance portability.

2) The naive BKP generally achieves better performance
since it ties to the strengths of the SYCL backends
– which have a longer legacy in achieving good per-
formance on the selected platform and device; this is
usually heavily optimized on account of it being tied to
a particular vendor, i.e. CUDA solely targets NVIDIA
GPUs and has been built upon for over a decade, ROCm
for AMD devices, TBB for Intel CPUs etc.

Where possible, memory access patterns should be deter-
mined by the SYCL backend rather than by the developer
since this may affect generality in the code. In other words,
the intent of the algorithm should be expressed independent
of the underlying architecture –there should be tools put
in place to facilitate this. A take-away message from the
deep-dive is to use the more advanced parallel constructs
only where it clarifies the programmer’s intent based on the
requirements/expression of the algorithm, not as an attempt at
optimization.

We also see that selection of problem size can significantly
impact performance according to backend. However, while
work-group size selection is often the first step for optimiza-
tion with most accelerator languages, this may not be a good
strategy with SYCL due to the additional layer of language
abstraction.

B. SYCLBench

The BlockedTransform benchmark highlights the scaling of
dedicated accelerator performance rather than all computation
occurring on the host, and is shown in Figure 6a) – where
concurrent mandelbrot kernel execution overlaps compute with
data transfers. The number of iterations was selected to be 512
and the blocksize increases over the x-axis. It appears GPU
devices perform better over larger blocksizes whereas CPU
devices are more affected by increasing the blocksize. Single
threaded CPU backends on achieve no benefit, multi-threading
on the Gold –with OpenMP and OpenCL– can handle and
scale with increasing blocksizes however are still an order
of magnitude worse than CUDA and ROCm GPU backends
which continue to scale with the greater load.

Figure 6b) presents the counter-point to using SYCL for
dedicated accelerators by highlighting the overhead of memory
movements over PCI-e to these devices. It shows the Gold’s
memory bus is generally four orders of magnitude faster than
PCI-e under different benchmark configurations.

We now examine a selection of SYCL-Bench applications
grouped by parallel construct. Because there are 32 unique
applications –and many support multiple data-primitives and
sizes– there are far too many results to show in this paper.
Accordingly, for each of the parallel construct benchmarks,
we present results only for 32-bit float data; the results for
other data-types are qualitatively similar across the different
implementations, with some minor exceptions. The perfor-
mance of BKP applications that support 32-bit floats is shown
in both Figure 7a) and WGP in Figure 7b) but highlights the
performance of SYCL runtimes and devices using the same
data-type but between different constructs. The broad trend is
that OpenMP, OpenCL, CUDA and ROCm backends perform
well on both. All figures –including those with other data-
types– are presented in the associated Jupyter artifact [8].

Figure 7c) presents execution time for all SYCL-Bench
HDP benchmarks across all supported data types. One un-
expected result is that the SegmentedReduction Hierarchical
benchmark runs faster for 64-bit floats than for 32-bit floats
on both hipSYCL-OpenMP and hipSYCL-ROCm, whereas for
all other implementations 32-bit floats are faster (as would be
expected).

Both task parallel construct applications are presented in
Figure 7d) to identify which devices and SYCL runtimes
experience less variability with task parallelism. OpenCL,
CUDA and OpenMP backends perform with equal variation in
execution time to run both benchmarks. The exception being
triSYCL which boasts both the best and less variable of the
OpenMP performance, with only pthreads on DPC++ beating
it on the dag task throughput sequential test, and being the
best performer on the independent test.

The results of synchronization kernels are presented in
Figure 7e) to show the effect of barriers on runtimes. Both
GPU devices –on all CUDA and ROCm backends– perform
best on all applications. ComputeCpp’s OpenCL responds the
best to barriers on the Gold CPU, being roughly two orders

0.01

0.10

1.00

10.00

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

Blocksize

E
xe

cu
tio

n
T

im
e

Lo
g 1

0(
s)

1e−04

1e−02

1e+00

1D
_D

2H
_C

on
tig

uo
us

1D
_D

2H
_S

tri
de

d

1D
_H

2D
_C

on
tig

uo
us

1D
_H

2D
_S

tri
de

d

2D
_D

2H
_C

on
tig

uo
us

2D
_D

2H
_S

tri
de

d

2D
_H

2D
_C

on
tig

uo
us

2D
_H

2D
_S

tri
de

d

3D
_D

2H
_C

on
tig

uo
us

3D
_D

2H
_S

tri
de

d

3D
_H

2D
_C

on
tig

uo
us

3D
_H

2D
_S

tri
de

d

Benchmark

E
xe

cu
tio

n
T

im
e

Lo
g 1

0(
s)

a) b)

SYCL Runtime

ComputeCpp pthreads − Gold

DPC++ pthreads − Gold

hipSYCL OpenMP − Gold

ComputeCpp OpenCL − Gold

DPC++ CUDA − P100

hipSYCL CUDA − P100

hipSYCL ROCm − gfx906

Fig. 6: Microbenchmarks a) BlockedTransform and b) Bandwidth to compare the performance of the SYCL Runtimes.

of magnitude faster than OpenMP and pthreads backends, and
could serve as a baseline for the developers of these backends
when looking to improve their performance. Finally, there is
very little difference in execution time when considering the
data-types used in each of the applications.

VI. CONCLUSIONS AND FUTURE WORK

SYCL is a promising language for portable HPC. It offers
a single-source implementation of algorithms, increases the
portability of programs by mapping back to most existing HPC
languages. Ultimately, it now supports most vendors hardware
and thus allows freedom from single vendor languages and
implementations. Unfortunately, our results show that while
of the many SYCL implementations compile and run on
many different backends, the selection of optimal runtime
and device is essential to guarantee good performance; this
is highlighted by our results where the same code targeted to
the same device experiences up to two orders of magnitudes
of absolute performance difference between the best and worst
SYCL runtimes. Thus, the performance-portability problem
–mapping a kernel to a device with optimal configuration–
is ongoing and is made more complicated under SYCL; it
gives another degree-of-freedom to the problem-space, where
scheduling must now also consider selection of the same code
to optimal backend. We believe many of these problems can
be addressed by ensuring consistency in functionality between
implementations and the addition of an intelligent run-time
scheduler within SYCL, where tasks span implementations.
Moving complexity from the developer to an automated sys-
tem, primarily concerned with scheduling for portability is
needed for SYCL to meet its full potential, and is an interesting
topic to pursue in future work.

The deep-dive into Matrix Multiplication highlights BKP
to be a useful parallel construct. We show tuning– carefully
selecting larger work-group sizes (HDP and WGP constructs)–
can still benefit GPU devices; however, this is less portable.
The BKP construct is both simpler to use –division of work
need not be considered– and the most performance-portable.

A take-away message from the deep-dive is to use the more
advanced parallel constructs only where it clarifies the pro-
grammer’s intent based on the requirements/expression of the
algorithm.

We also present an evaluation of the state-of-the-art in
SYCL support by compiling a swath of applications –from
the SYCL-bench suite– and offer a breakdown of these codes
into the corresponding SYCL parallel construct.We show that
characterizing SYCL codes by parallel construct is a useful
way to analyse expected performance. In the future, we would
like to examine the last OpenCL backend for DPC++ which
was the one missing backend in our work.

REFERENCES

[1] “The OpenCL 1.0 specification,” Khronos Group, Tech. Rep., 2008.
[2] “SYCL specification 1.2.1 revision 7,” Khronos Group, Tech.

Rep., 2020. [Online]. Available: https://www.khronos.org/registry/
SYCL/specs/sycl-1.2.1.pdf

[3] A. Alpay and V. Heuveline, “SYCL beyond OpenCL: The architecture,
current state and future direction of hipSYCL,” in Proceedings of the
International Workshop on OpenCL, 2020, pp. 1–1.

[4] Codeplay Software Ltd, “ComputeCpp.” 2020. [Online]. Available:
https://www.codeplay.com/products/computecpp

[5] A. Dubey, P. H. Kelly, B. Mohr, and J. S. Vetter, “Performance portability
in extreme scale computing (Dagstuhl seminar 17431),” in Dagstuhl
Reports, vol. 7. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

[6] Intel Corporation, “Intel Data Parallel C++ Compiler,” 2020. [Online].
Available: https://github.com/intel/llvm

[7] B. Johnston, “SYCL-Bench Docker image.” 2020. [Online]. Available:
https://hub.docker.com/r/beaujoh/syclbench

[8] ——, “SYCL-Bench Jupyter artefact.” 2020. [Online]. Available:
https://github.com/BeauJoh/sycl-bench

[9] R. Keryell and L.-Y. Yu, “Early experiments using SYCL single-source
modern C++ on Xilinx FPGA,” in Proceedings of the International
Workshop on OpenCL, ser. IWOCL ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3204919.3204937

[10] J. Nickolls and I. Buck, “NVIDIA CUDA software and GPU parallel
computing architecture,” in Microprocessor Forum, 2007.

[11] S. J. Pennycook, J. D. Sewall, and V. W. Lee, “Implications of a metric
for performance portability,” Future Generation Computer Systems,
vol. 92, pp. 947–958, 2019.

[12] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI:
The Complete Reference (Vol. 1): Volume 1-The MPI Core. MIT press,
1998, vol. 1.

https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.codeplay.com/products/computecpp
https://github.com/intel/llvm
https://hub.docker.com/r/beaujoh/syclbench
https://github.com/BeauJoh/sycl-bench
https://doi.org/10.1145/3204919.3204937

1e−04

1e−03

1e−02

1e−01

1e+00

Arit
h_

fp
32

_5
12

DRAM
_f

p3
2_

1

DRAM
_f

p3
2_

2

DRAM
_f

p3
2_

3

Km
ea

ns
_f

p3
2

Lin
ea

rR
eg

re
ss

ion
_f

p3
2

Ve
cto

rA
dd

itio
n_

fp
32

sf_
fp

32
_1

6

E
xe

cu
tio

n
T

im
e

Lo
g 1

0(
s)

1e−04

1e−02

1e+00

1e+02

Lin
ea

rR
eg

re
ss

ion
Coe

ff

Lo
ca

lM
em

_4
09

6

NBod
y

Sca
lar

Pro
du

ct

Seg
m

en
te

dR
ed

uc
tio

n

E
xe

cu
tio

n
T

im
e

Lo
g 1

0(
s)

1e−04

1e−02

1e+00

NBody_fp32

Reduction_fp64

Reduction_int64

Reduction_int32

NBody_fp64

DAGTaskThroughputParallelFor

ScalarProduct_fp64

ScalarProduct_fp32

ScalarProduct_int64

ScalarProduct_int32

SegmentedReduction_fp64

SegmentedReduction_fp32

SegmentedReduction_int64

SegmentedReduction_int32

SegmentedReduction_int16

IndependentDAGTaskThroughputParallelFor

E
xe

cu
tio

n
T

im
e

Lo
g 1

0(
s)

0.01

0.10

1.00

10.00

DAGTaskThroughput

IndependentDAGTaskThroughput

E
xe

cu
tio

n
T

im
e

Lo
g 1

0(
s)

1e−04

1e−02

1e+00

1e+02

Lin
ea

rR
eg

re
ss

ion
Coe

ff_
fp

32

Lin
ea

rR
eg

re
ss

ion
Coe

ff_
fp

64

Lo
ca

lM
em

_f
p3

2_
40

96

Lo
ca

lM
em

_f
p6

4_
40

96

Lo
ca

lM
em

_in
t3

2_
40

96

NBod
y_

fp
32

NBod
y_

fp
64

Red
uc

tio
n_

fp
64

Red
uc

tio
n_

int
32

Red
uc

tio
n_

int
64

Sca
lar

Pro
du

ct_
fp

32

Sca
lar

Pro
du

ct_
fp

64

Sca
lar

Pro
du

ct_
int

32

Sca
lar

Pro
du

ct_
int

64

Seg
m

en
te

dR
ed

uc
tio

n_
fp

32

Seg
m

en
te

dR
ed

uc
tio

n_
fp

64

Seg
m

en
te

dR
ed

uc
tio

n_
int

16

Seg
m

en
te

dR
ed

uc
tio

n_
int

32

Seg
m

en
te

dR
ed

uc
tio

n_
int

64

E
xe

cu
tio

n
T

im
e

Lo
g 1

0(
s)

a) b)

c) d)

e)

SYCL Runtime

ComputeCpp pthreads − Gold

DPC++ pthreads − Gold

hipSYCL OpenMP − Gold

triSYCL OpenMP − Gold

ComputeCpp OpenCL − Gold

DPC++ CUDA − P100

hipSYCL CUDA − P100

hipSYCL ROCm − gfx906

Fig. 7: Performance of a selection of SYCL-Bench benchmarks separated by parallel construct: a) Basic Kernel Parallelism
(BKP), b) Work-Group Parallelism (WGP), c) Hierarchical Data-Parallelism (HDP), d) Single-Task Parallelism (Task), and e)
Synchronization (Sync).

	Introduction
	Methodology
	SYCL Implementations
	SYCL Parallelism Constructs
	BPK – Basic data-parallel kernels
	WGP – Work-group data-parallel kernels
	HDP – Hierarchical data-parallel kernels
	Task – Single-Task Kernels
	Sync – Synchronization
	Overview

	Evaluation Results
	Matrix Multiplication
	SYCLBench

	Conclusions and Future Work
	References

