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Abstract

Today, multi-GPU computing nodes are the mainstay of most high-performance computing systems. Despite significant

progress in programmability, building an application that efficiently utilizes all the GPUs in a computing node is still a significant

challenge, especially using the existing shared-memory and message-passing paradigms. In this aspect, the task-based dataflow

programming model has emerged as an alternative for multi-GPU computing nodes.

Most task-based dataflow runtimes have dynamic task mapping, where tasks are mapped to different GPUs based on the current

load, but once the mapping has been established, there is no rebalancing of tasks even if an imbalance is detected. In this paper,

we examine how automatic dynamic work sharing between GPUs within a compute node can improve the performance of an

application through better workload distribution. We demonstrate performance improvement through dynamic work sharing using

a Block-Sparse GEneral Matrix Multiplication (BSpGEMM) benchmark. Although we use PaRSEC, a task-based dataflow runtime,

as the vehicle for this research, the ideas discussed here are transferable to any task-based dataflow runtime.
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1. Introduction

In many high-performance computing systems today, the

main source of computing power is GPU devices, with their

high memory bandwidth and powerful parallel computing ca-

pabilities. Although in 2007, none of the Top500 computer

systems included GPU accelerators, by 2022, 168 of them were

using at least one GPU per node, and only two of the top 10

supercomputers in November 2022 did not use accelerators [1].

The first Exascale machine, Frontier, comes with 4 GPUs per

node, which provide more than 90% of its computing capa-

bility. To fully utilize this computing power, an application

must distribute its workload over the GPUs. Despite signif-

icant progress, programming for such systems remains a dif-

ficult task, as the programmer must manage low-level issues

of distributed and per-device memory spaces, scheduling, syn-

chronization, device-to-host communication and load balancing

between the many devices in the node.

PaRSEC [2, 3] is a task-based dataflow programming model

that moves this low-level decision-making from the program-

mer to the runtime. In this model, an application is a collection

of tasks with dependencies derived from the data flow among

the tasks. Tasks can be executed in any order that maintains the

dependency relations between them. For each type of task, the

programmer can provide multiple task kernels aimed at differ-

ent devices, providing the runtime with the flexibility to choose
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the best computational resource for each kernel. The runtime

will then dynamically decide when and where to execute these

kernels. PaRSEC promotes separation of concerns in applica-

tion development: a domain-specific language (DSL) provides

the Directed Acyclic Graph of tasks that defines the algorithm

implementing the application while scheduling on the comput-

ing resources of a given platform is a runtime decision that tar-

gets some optimization criteria, such as the performance im-

provement for the target platform. As a fundamental element

to achieve this separation of concerns, the PaRSEC runtime im-

plements data movement between devices and between host and

device. PaRSEC runtime also coordinates the execution of tasks

on the devices without programmer intervention.

A key hurdle for the efficient utilization of multi-GPU sys-

tems is load balancing. An application may offload more work

to a subset of the system’s GPUs while the rest will remain

underutilized. The reason for this imbalance is manifold: in

some applications, it is not possible to find an ideal task map-

ping ahead of time, or the heuristic used by the runtime for task

mapping may not suit an application, or the imbalance could

be because of a programmer oversight as assumptions that are

valid for one application may not hold in another. While PaR-

SEC addresses most of the challenges of a heterogeneous sys-

tem, it does not address the problem of load imbalance between

GPU devices. In this paper, we enhance PaRSEC to explore

how dynamic load balancing between GPU devices improves

performance.

There is a rich literature on how to partition and dis-

tribute/map tasks between CPUs and GPUs in a node (Sec-
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tion 2). Most of these partitions are based on data locality,

heuristics, or a combination of both. While these mapping

strategies work for regular applications, for which the Directed

Acyclic Graph (DAG) of tasks is static, they can create a prob-

lem for irregular applications, for which the DAG of tasks is

input-data or even computation-dependent, as an irregular ap-

plication may have unpredictable memory access, data flow,

or/and control flow.

Although most of these mapping strategies consider the

load of the GPUs before mapping a task to the GPU, they do

not migrate tasks between GPUs after the mapping decision has

been made. We are interested in how load balancing can help

after this partition results in load imbalances.

1.1. Contributions

The contributions of this paper are as follows:

1. Enhance the PaRSEC runtime to enable inter-GPU work

sharing for automatic load balancing.

2. Investigate whether having a co-manager thread in addi-

tion to a manager thread helps improve the performance.

3. Investigate whether task selection policies play a role in

improving performance.

4. Investigate whether migrating a chunk of tasks plays a

role in improving performance.

2. Related Work

Zheng et al. [4] implement a data processing system in

which data are divided into equal-sized chunks. A fuzzy neural

network (FNN) is used to predict the real-time computational

performance of a GPU and this prediction is used to assign

chunks of data to the GPU for processing. While prediction

enables better data mapping, the data is not moved to another

GPU if there is a dynamic load imbalance. Chen et al. [5] im-

plement a multi-GPU system on Flink where work is assigned

to a GPU based on a locality-aware algorithm, but there is no

dynamic load-balancing between the GPUs. Similarly, Gautier

et.al [6] implements locality-based multi-GPU task-based run-

time, where tasks are mapped to a GPU based on the locality

of the data and are not subsequently migrated to other GPUs.

Troodon [7] implements task migration between CPU and GPU

for OpenCL applications using a machine learning framework.

While there is load balancing between CPU and GPU, load bal-

ancing between GPUs is not considered.

Chen et al. [8] launch persistent worker thread blocks in

the GPU. One thread among the worker threads takes charge of

task management using a common queue shared between the

worker thread blocks of all GPUs in the node. While this may

allow robust reactions to imbalance, forcing GPU threads to be

management threads can add significant overheads. Chatterjee

et al. [9] treat each steaming multiprocessor as a worker block,

where worker blocks can steal tasks from other blocks in the

same GPU but not between GPUs in a node. Acceleration En-

gine for Multi-GPU Load-balancing (AEML) [10] implements

a multi-GPU load-balancing on Spark. AEML uses the number

of idle streams available to measure underutilization, and it also

uses a feedback mechanism to adjust the number of streams on

each GPU based on its computation capability. While AEML

provides a good mapping of tasks to GPU based on the cur-

rent load, there is no movement of assigned tasks from one

GPU to another to compensate for dynamic load imbalances.

DCUDA [11] uses a wrapper function over CUDA calls to dy-

namically balance CUDA kernels between GPUs. DCUDA

records the kernel execution time when it is first called and uses

this, along with memory and thread requirements of the kernel,

to evaluate the load it will exert on a GPU. This metric is used

to map tasks to GPUs, but there is no load balancing after task

mapping.

XKaapi [12] and StarPU [13] implement dynamic task

stealing, where each GPU has a task queue associated with it,

and any GPU can steal tasks from other GPUs as long as the

data the task requires is not already being transferred to a par-

ticular GPU. Hermann et al. [14] propose a system based on the

affinity between GPUs. Tasks are distributed to device-specific

queues at the start of each iteration, and if a device starves, it

can steal from a list of devices with which it has an affinity.

3. PaRSEC

Parallel Runtime Scheduler and Execution Controller (PaR-

SEC) [2] is a task-based dataflow runtime, where the execution

of tasks is fully distributed with no centralized components.

Task scheduling, detection of local and remote dependencies,

movement of data between nodes, and detection of distributed

termination [15] are all the responsibilities of the runtime in

PaRSEC, and under the control of the user via multiple mecha-

nisms to control the execution of the DAG of tasks. PaRSEC

provides multiple domain-specific languages [16, 17], which

developers can use to express their applications as a DAG.

The developer is responsible for defining the tasks and the de-

pendencies amongst the tasks using these domain-specific lan-

guages.

Each CPU thread in PaRSEC has access to a node-level

scheduler and its queues. When a task is activated, it is first

pushed to the scheduler’s queue. CPU threads select tasks from

this queue for execution. In PaRSEC, a task can have multi-

ple implementations for different devices on the node. For in-

stance, a general matrix multiply (GEMM) task can have one

kernel that can be executed by a CPU and another kernel that

can be executed by a GPU. When a CPU thread selects a task

with a GPU-specific kernel, the CPU thread can hand over the

task to a GPU manager thread. The runtime system is responsi-

ble for selecting the device type that will be used to execute the

task, but the user can control this selection through a variety of

mechanisms. In this paper, we assume that all the tasks have a

CUDA kernel, and when we refer to GPU or device, we assume

an NVIDIA GPU that can support CUDA 10 and above.

3.1. GPU Management

The PaRSEC runtime dedicates a manager thread to manage

all aspects of task execution on a GPU. Any CPU thread can

become a GPU manager thread, but at any instant there can be
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only one manager thread per GPU. The transition of a CPU

worker thread to a manager thread occurs on a first-come, first-

served basis. Any worker thread that finds a task with a GPU

kernel (GPU task from now on) tries to hand over the task to a

GPU manager thread. If the GPU was previously idle and does

not yet have a manager thread, the thread that is performing the

handover itself becomes the manager. On the other hand, if a

manager already exists for a GPU, other threads just push GPU

tasks to the GPU-specific queue and leave the rest of the task

management to the manager thread (see [18] for more details).

Each GPU in PaRSEC is divided into a configurable num-

ber of streams. One stream is reserved for moving data from

host memory to GPU memory (stage-in stream), one stream

is reserved for moving data from GPU memory to host mem-

ory (stage-out stream), while the rest of the streams (default

is 2) are used to launch the task kernel to the GPU (execution

streams). Using multiple streams in the GPU allows the over-

lap of new task submissions with execution on the GPU, and

increases GPU utilization when each individual task does not

expose enough parallelism to span over the entire GPU.

3.2. Memory Management

The memory of each GPU is managed by PaRSEC. A user-

defined part of the GPU memory is allocated to the PaRSEC

runtime when the GPU is initialized (typically 95% of the avail-

able GPU memory, but this can be controlled by the user). This

memory is then divided into segments of equal size, and task

data is mapped to contiguous segments of GPU memory as re-

quired. PaRSEC keeps track of the memory segments used for

each data item in concert with the data management mecha-

nism (see Section 3.3). This mechanism significantly reduces

the overhead of memory allocation compared to allocating the

data using the CUDA API each time a task requires it. The

disadvantage of this method is that sometimes more than the

required size of the memory will be assigned to a data item.

An alternative to this method is to allocate memory to the GPU

only when needed, but this is expensive, as the CUDA memory

allocation operation is blocking.

3.3. Data Management

Each GPU in PaRSEC has its own copy of the data and each

copy is versioned as shown in Fig. 1. The DSLs in PaRSEC are

designed so that at most a single writer task is enabled for a

particular copy of the data at any given time, and when a task

writes to a data copy, its version is incremented. This ensures

that only one task can change the data at any time. If task T

has to execute on GPU D1, PaRSEC makes sure that the latest

version of the data it needs is made available on GPU D1 dur-

ing the stage-in step of the task progression. The latest copy

is made available in the GPU memory using a Host-to-Device

copy or a Device-to-Device copy based on which device (host

or any GPU) has the latest version of the data. During stage-in,

there are three scenarios that we may encounter:

1. The required version of the data is already available in

the GPU D1; no transfer is required.

Figure 1: Device copies and data versioning

2. The required version of the data is available in another

GPU D2; the data are transferred from the memory of

D2 to D1 (D2D copy).

3. The required version of the data is available on the host;

the data are transferred from the host to the device (H2D

copy).

If the required data version is available on both the host

and a GPU (or GPUs), the data are transferred from the GPU

memory.

When operating under out-of-core conditions (the GPU

memory is too small to hold the memory footprint of the appli-

cation), the runtime system implements an eviction policy that

ensures that some operations can proceed. The PaRSEC evic-

tion policy is hardcoded in the PaRSEC CUDA device manager.

The only policy available is Least-Recently Used (LRU), but

others could be implemented by modifying the PaRSEC source

code. As the PaRSEC CUDA device manager moves the data

and schedules the tasks, it can easily track what data are cur-

rently used by the tasks, what data has been updated on the

GPU, and transition the data that are not referenced by any task

onto the potentially-evicted LRU.

The runtime systemmaintains two lists sorted in LRU order.

The first list holds all read-only data (or, in general, all data

that have an up-to-date version on RAM or another device), and

the second holds data that have been modified and that do not

have another up-to-date copy on another device. When memory

is required on the GPU, the least recently read-only data are

evicted, and asynchronous updates of the least recently used

modified data are scheduled. When an update completes, the

corresponding data moves from the modified LRU to the read-

only LRU. If memory is necessary and no read-only data can

be released, the GPU enters a thrashing mode and waits for the

completion of tasks or data update operations to continue to the

next operation.

One of the tools available to the user to fine-tune the data

movement is the preferred copy mechanism: any given data

copy can be marked by the user as the preferred copy represent-

ing this data. The PaRSEC scheduler will then use this copy as

the source when the data needs to be copied from somewhere
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else and multiple alternative copies have the correct version.

Similarly, each data item can be assigned a preferred device by

the user (dynamically during execution), and if multiple devices

are available to host a copy of this data, the preferred device will

be selected first by the runtime system.

3.4. Task management

A PaRSEC task goes through a series of steps before it is

executed by the GPU. Each step consists of a set of host com-

putations and asynchronous orders sent to the various streams

of the GPU. Completion of the asynchronous commands in a

stage triggers the start of the next stage. We call the transition

of the task from one step to another task progression. Between

each stage, the runtime manages a queue of tasks. Each stage

consumes a task from its queue, and the asynchronous comple-

tion of a stage for a task triggers the insertion of this task in the

next-stage queue.

Step 1-. Task mapping: The CPU thread decides which GPU

to map the tasks to. PaRSEC relies on data locality and simple

load estimates to make this decision. Users can provide a pre-

ferred device advice to the data elements referenced by tasks to

guide this selection. In this locality-based algorithm, if a GPU

already holds some data the task requires, in GPU memory, the

task is assigned to that GPU. If none of the task’s data is cur-

rently in any of the GPUs, the task is assigned to a GPU based

on the user’s advice or the GPU’s estimated load. The GPU load

is updated whenever a task is mapped to a GPU or completes

execution on a GPU. The information provided in the task de-

scription is used to estimate the amount of work associated with

the task. Once the best GPU to map the task is selected, the

CPU thread pushes the task into the device queue of the GPU.

From this point on, all progression of the GPU task is the re-

sponsibility of the GPU manager thread. This load balancing

strategy is only partially dynamic: it takes into account the cur-

rent estimated load of the GPUs, but once a task is submitted to

a GPU, it will not migrate to another device, so any error in the

load estimate of the tasks (the task to be scheduled, but also all

the tasks previously scheduled) can lead to load imbalance. We

study later in the paper how dynamic task migration mitigates

this issue.

Step 2-. Stage-in: The task is moved to the stage-in queue. For

every task in this queue, the GPU manager moves the required

version of data of the task from the host memory to GPU mem-

ory (or GPU memory to GPU memory) if it is not already on

the GPU, using the stage-in stream.

Step 3-. Task offloading: The task is moved to the execution

queue. The task in this stage has all its data available on the

GPU memory, and the manager offloads the task from this

queue to the GPU for execution using the execution stream.

PaRSEC still controls the task as long as it is in the execution

queue and task offloading has not commenced.

Step 4-. Task execution: The task is launched on the GPU.

Once launched, the task is not the responsibility of the GPU

manager until it is completed, and the execution of the task de-

pends on the CUDA internal scheduler policies.

Step 5-. Stage-out: Task execution is completed and the task

is moved to the stage-out queue. From this point on, PaRSEC

regains control of the task. The manager transfers the task data

from the GPU memory to host memory if such a transfer is

required.

Step 6-. Task epilogue: The runtime system analyses the task

to discover its successors and computes the necessary data

movements and task completion notifications.

4. Adding inter-GPU load balancing to PaRSEC

GPU load is affected by a mix of user decisions (typically

via the preferred device mechanism), load balancing heuristics,

and data flow during execution. Although heuristics can suc-

cessfully predict the load of a regular application, they easily

fail for irregular applications. Similarly, although it is a sim-

ple task for the user to guide the load distribution in a regular

case, deciding which device is the preferred device in an irreg-

ular data-dependent application is a very difficult task. Another

approach that we advocate in this work is to rely on a mech-

anism that can dynamically load balance at any instance after

the task has been mapped to a GPU. At any given time, there

are potentially many tasks ready to be scheduled, much more

than the number of tasks a single GPU can run in parallel. A

dynamic approach will enable us to leverage the advantages of

heuristic-based task mapping, as well as dynamic load balanc-

ing when the heuristic-based mapping fails to distribute tasks

properly.

The concepts discussed here have been implemented for

NVIDIA GPUs, but these concepts are applicable to any GPU

that supports asynchronous data movement and asynchronous

kernel submission. The PaRSEC runtime system now supports

Intel and AMD GPUs, and the same modifications could be

ported to both hardware without changes at the programmer

level.

4.1. Work Sharing

We use work sharing instead of work stealing for load bal-

ancing. In work stealing, a manager thread of a starving GPU

tries to steal tasks from the queues of a busy GPU. This poses

two problems - first, the manager thread of one GPU will need

to access the queues of other GPUs, which can increase con-

tention. Second, the tasks can be in any of the stages men-

tioned in Section 3.4, and this could complicate the process of

work stealing. For example, if the memory of the busy GPU

is already allocated to the task to be stolen, the manager of the

starving GPU must initiate steps to relinquish this memory.

In work sharing, the busy GPU detects a starving device

and pushes some of its work to the starving GPU. This re-

solves the contention problem, as only the manager of the over-

provisioned GPU needs to access its queues, and as it migrates
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tasks that it owns, it has full control of the task stage. The mech-

anism to push tasks to the starving GPU leverages the existing

task submission mechanism that avoids contention on queues of

the starving GPUs. The manager of the busy GPU selects a task

from its queue to migrate to the starving GPU. These selected

tasks are pushed to a node-level queue with the information on

which GPU it is intended for. Then any CPU thread can move

the tasks from this node-level queue to the starving GPU using

the method detailed in Section 3.1.

The only disadvantage is that all the GPUs need to know

the load of the other GPUs. In shared memory, this is not a

costly operation, as we can keep track of the GPU load using

a host-side data structure. The manager thread of each task

checks if other GPUs are starving. If starvation is detected, it

selects a list of tasks to be migrated to that GPU. The check for

starvation is done in a round-robin fashion, while task selection

can be performed using multiple selection policies. We assume

starvation if the number of uncompleted tasks falls below the

number of streams available in the GPU.

4.2. Task selection policies

The selection policies decide which tasks to select in case

starvation is detected on a GPU. In each policy, the manager

tries to select chunk size number of tasks. If the manager cannot

find the entire chunk size from one queue, it moves on to the

next queue (first the Stage-1 queue, then the Stage-2 queue and

finally the Stage-3 queue). A queue can contain both compute

tasks (defined by the user) and bookkeeping tasks (introduced

by the runtime to manage bookkeeping events).

During the search of the queue, the manager thread has ex-

clusive access to the queues. This can increase contention if we

are using a dedicated thread, separate from the manager thread,

to migrate tasks. In each policy, the maximum task selected is

equal to the chunk size. Chunk size is the upper bound on the

number of tasks migrated to GPU on a single task sharing.

We experiment with five different selection policies:

1. Single-pass: The manager selects the first computing

task from a queue.

2. Single-try: The manager tries to select the task from the

front of the queue. The search ends if a bookkeeping task

is encountered at the front of the queue. The idea here

is to relinquish the lock on the queue and move on to the

next queue, thereby reducing the contention on the queue

in the case of a dedicated load-balancing thread.

3. Device-affinity: The manager tries to select a compute

task with an affinity with the starving GPU. A task has an

affinity with the GPU if one or more of the data it needs

is already available on the starving GPU. The idea here

is that we can reduce the number of stage-ins if some

required data are already on the starving node.

4. Task-affinity: The manager tries to select a compute task

with affinity with the previously selected task. A task has

an affinity with another task if one or more of the data the

tasks needs are the same. For the first task selected, this

affinity condition is not enforced. The idea here is that if

the tasks have common data, they can be reused, thereby

reducing the number of stage-ins required.

5. Two-pass: This policy is a combination of device-affinity

and single-pass. In this policy, we make two passes on

the queue. In the first pass, only tasks with an affinity to

the GPU are selected. In the second pass, any compute

task is selected. The idea here is as far as possible to

find a task with affinity with the starving device; if such

a device cannot be found, find any compute tasks.

4.3. Task Types

Based on whether the data of the task is already staged-in

(available on the GPU), tasks can be divided into two types:

1. Task whose data are not yet staged in.

2. Task whose data has already been staged-in.

The first type of task is available in the Stage-1 queue and

the Stage-2 queue, while the second type is available in the

Stage-3 queue. In previous work, only task whose data has not

yet been staged-in was migrated, but in our work, we migrate

both types of tasks.

4.4. Delegating work to co-manager

In PaRSEC, the GPU manager thread handles all aspects of

task management. In our work, we evaluate whether delegat-

ing some aspect of the GPU task life cycle to another thread

will impact performance. For this, we introduce an additional

thread, the co-manager thread, to assist the manager thread. As

the first CPU thread that submits a GPU task to the GPU de-

vice becomes the manager thread, the second CPU thread that

submits the work to a GPU becomes the co-manager thread. If

there is no co-manager available, i.e. only one task was submit-

ted to the GPU, then the manager will handle all the work. We

evaluate two aspects of work delegation:

1. Delegate epilogue completion: Much of the management

work is in the task epilogue, where all the successors to a

completed task are evaluated and potentially enabled and

scheduled. During the processing of the epilogue, the

progress of the GPU streams is not checked, which can

increase the latency of submitting new work to the GPU.

2. Delegate migration: We delegate the responsibility of

task migration to the co-manager.

5. Results

5.1. Experimental Setup

Experiments were conducted on the machine Leconte in

the Innovating Computing Laboratory at the University of Ten-

nessee. Leconte contains two NUMA nodes each with a In-

tel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz CPU and 8

NVIDIA Tesla V100 SXM2 32GB accelerators connected in

a Hypercube-Mesh model [19] as shown in Fig. 2.
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Figure 2: GPU layout in Leconte. The red line between GPUs represents

NVLink2 connections and the blue line between GPUs represents the NVLink1

connections. The dotted black lines between GPUs represent connection

traversing PCIe as well as the SMP interconnect between NUMA nodes.

5.2. Benchmarks

We use three widely used linear algebra algorithms, the

Block-Sparse GEneral MatrixMultiplication (BSpGEMM) [20],

Block GEneral Matrix Multiplication (GEMM) and Block

Cholesky Factorization to test multi-GPU load balancing through

task migration. Block-Sparse GEMM is an important opera-

tion used in computational science simulations and data science

domain. It is inherently imbalanced due to the following at-

tributes:

1. The rows and columns of the matrices are tiled non-

uniformly due to the nonuniform structure of the physical

problem it represents.

2. The matrices are block-sparse, with varying filling de-

grees. This means that a tile is either full, where each

element is represented in memory, or empty, where all

elements are zero.

3. The aspect ratios of the matrices can vary greatly from 1

(matrices will be square) to 100s (matrices will be tall-

and-skinny, or short-and-wide).

All these characteristics decrease the potential for data reuse

and diminish the arithmetic intensity making it difficult to find

a fair static task mapping across the number of available GPUs

in a compute node. We also use the Block-Dense GEMM and

Block Cholesky Factorization benchmarks to show that task mi-

gration can improve the performance of regular, balanced appli-

cation to some degree and it does not reduce the performance

of such an application. We test inter-GPU task simulation on

the following scenarios:

1. Scenario 1: Matrix A with dimensions 20k × 200k with

tile size 200 × 200. Matrix B of dimension 20k × 800k

with tile size 200×8k. Both matrix A and B has a density

of 30% (Synthetic Benchmark).

2. Scenario 2: Matrix A with dimensions from 20k × (10k ·

#GPU) with tile size 100 × (100 · #GPU). Matrix B

with dimensions (10k · #GPU) × 800k with tile size

(100 · #GPU) × 100. Both matrices, A and B, have a

density of 30% (Synthetic Benchmark).

3. Scenario 3: Matrix A with dimensions 50k × 100k and

Matrix B with dimensions 10k × 500k, both with tile size

1k × 1k. Both matrices A and B are dense(Synthetic

Benchmark).

4. Scenario 4: We calculate A × AT , where A is a ma-

trix generated by a real Coupled-Cluster Singles and

Doubles method (CCSD) electronic structure model for

the matrix representation of the Yukawa integral oper-

ator (exp(−r12/5)/r12) in the cc-pVDZ-RIFIT Gaussian

atomic orbital basis for the main protean of the SARS-

CVO-2 virus in complex with the N3 inhibitor [21]. The

matrix A has 44×4225 blocks where the size of the block

varies between 361×696 and 792×576 and has a sparsity

of 30% (Practical Benchmark).

5. Scenario 5: PaRSEC runtime allows the application de-

veloper to advise the runtime on the preferred GPU to

execute a task, which gives the developer a degree of

control over the load distribution. Although this ad-

vice mechanism can improve performance, it is very

application-specific. All the Sparse GEMM scenarios

mentioned above were run using this advice mechanism.

In Scenario 5, we test how task migration performs when

this advice mechanism is not used. Matrix A with dimen-

sions 20k× 200k with tile size 200× 200. Matrix B of di-

mension 20k×800k with tile size 200×8k. Both matrices

A and B have a density of 30% (Synthetic Benchmark).

6. Scenario 6: Matrix A and matrix B with dimensions

100k × 100k both with tile size 1k × 1k. Both matrices

A and B are dense(Synthetic Benchmark).

5.3. Imbalance

We quantify the imbalance in an application using Eq. (1),

where TGi is the total count of compute tasks executed on the

ith GPU, without any task migration. σ(TG1 ,TG2 , ...,TGN ) is the

standard deviation between these task count and
P
(T

G1
,T
G2
,...,T

GN
)

N

is the mean of these tasks count.

I =
σ(TG1 ,TG2 , ...,TGN )
P
(T

G1
,T
G2
,...,T

GN
)

N

(1)

Note that this definition of imbalance assumes that all tasks of

the same type represent the same amount of work. In Section

5.5, we will show that this assumption does not hold in all cases;

in practice, the same kernel with the same data dimensions can

have different task execution times. In the above equation, we

don’t consider the granularity of individual tasks, only the num-

ber of tasks.

5.4. Work delegation to a co-manager

At present in PaRSEC, all the stages of GPU tasks are man-

aged by the GPU manager. While most of these stages are re-

lated to the GPU the manager will also do task-related book-

keeping (such as identifying successors for tasks completed on

the GPU, triggering communications, and so on). This extra

work prevents the manager from completely focusing on the

management of a GPU device and instead forces it to do poten-

tially time-consuming work that might impact the GPU occu-

pancy. To test if delegating some work to a co-manager is nec-

essary and efficient, we compare the performance of the Block-

Sparse GEMM benchmark when epilogue completion and task
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Figure 3: Performance of Block-Sparse GEMM, without migration, with and

without delegating epilogue. Tested in scenario 1.

Figure 4: Performance of Block-Sparse GEMM (without migration) when epi-

logue completion is delegated and when it’s not. Tested in scenario 1 with

4 GPUs. In the graph, epilogue time is the time taken for the manager/co-

manager to execute the epilogue and the turnaround time is the time interval

between when the task was first received by the manager and when all oper-

ation, including epilogue completion, was completed by manager/co-manager.

The graph is a boxplot, where the solid box shows the inter-quartile range and

the whiskers show the range of non-outlier values. The line across the box

shows the median value, while the triangle shows the mean value.

migration are delegated to a separate co-manager. We tested the

following scenarios:

1. Without task migration, where the epilogue of a task is

completed by the manager thread.

2. Without task migration, where the epilogue of the task is

delegated to the co-manager thread.

3. With migration, where migration is undertaken by the

manager thread.

4. With migration, where migration is delegated to the co-

manager thread.

From Fig. 3 we can see that delegating epilogue comple-

tion to a co-manager does not seem to affect the performance

for a smaller number of GPUs (#GPU ≤ 6). However, when

the number of GPUs increases (#GPU > 6), delegating epi-

logue completion shows an increase in performance. Without

access to more GPUs per node, we cannot conclusively say

that delegating epilogue completion of a co-manager will im-

prove performance when the #GPU > 6. When we profiled

the tasks, we observed that the epilogue completion time and

the overall turnaround time of the tasks are similar, irrespective

of whether task completion is delegated or not. Furthermore,

epilogue completion remains a small percentage of the over-

all turnaround time of the task. Thus, in these scenarios, the

Figure 5: Performance of Sparse GEMM, with migration, when migration is

delegated and when it’s not. The performance is compared against Sparse

GEMM performance without migration and without any epilogue delegation.

Tested on scenario 1.

Figure 6: Waiting time for tasks that were migrated and tasks not migrated.

Tested on scenario 1 with 4 GPUs. We calculate the waiting time as the interval

between when a task was first mapped to a GPU and when the data stage-in for

the task begins in the same GPU.

delegation of epilogue completion does not show performance

improvement (Fig. 4). We believe that when an application has

numerous tasks with a large number of successor tasks, the time

taken to complete the epilogue will become non-trivial. In such

cases, delegating the epilogue completion will significantly im-

pact the overall performance.

Fig. 5 shows the performance of the Sparse GEMM bench-

mark for different design choices related to delegating task mi-

gration when compared to existing PaRSEC behavior. From

the figure, we can see that task migration improves perfor-

mance, especially when the task migration is delegated to the

co-manager. Migration shows this improvement because mi-

grating tasks reduces the waiting time of tasks, as shown in Fig.

6. We calculate the waiting time as the time interval between

when a task was first mapped to a GPU and when the data stage-

in for the task begins in the same GPU. When we measured

the waiting time, we found that the average waiting time for a

task that was not migrated was 100 times more than the aver-

age waiting time of a migrated task on the GPU to which it was

migrated.

Delegating task migration to a co-manager thread improves

the performance, especially as the number of GPUs increases

because the manager thread can proceed with the progression

of other tasks while task migration is taken care of by the co-
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Figure 7: Number of tasks migrated with and without migration delegation.

Tested on scenario 1.

Figure 8: Imbalance calculated when tasks are not migrated and speedup

achieved for migration with migration delegation when compared to without

migration without epilogue delegation. Tested on scenario 1.

manager thread. Also, when we counted the number of tasks

migrated (Fig. 7), it remained almost the same irrespective of

whether the migration was delegated or not. Thus the perfor-

mance of improvement of delegation does not come from mi-

grating more tasks but allowing the progression of tasks to pro-

ceed with less hindrance.

Fig. 8 gives the performance of the BSpGEMMbenchmarks

under scenario 1, both with and without migration, in relation to

the degree of imbalance. The performance metric represents the

mean of all observed values from Fig. 5. The figure shows that

without migration, the performance levels off after engaging

6 GPUs. Conversely with migration, scalability improves no-

tably. In all cases, runs with migration consistently deliver su-

perior performance compared to those without migration. From

the figure we can see the most performance gain is achieved

when the overall imbalance is high. However, the correlation

between the imbalance and performance is not perfect. This

discrepancy arises from the fact that imbalance is calculated

based on the final task mapping to the GPUs (without migra-

tion), while the actual migration and subsequent performance

gains are based on the instantaneous load imbalance.

We also tested the weak scaling performance of migration,

Fig. 9. From the figure, we can see that delegating task mi-

gration to a co-manager thread always performs well, while not

delegating migration results in erratic behaviour.

From these experiments, we conclude that delegating epi-

logue completion to a co-manager does not conclusively show

performance improvement. At the same time, delegating task

migration to a co-manager shows performance improvement.

Figure 9: Weak scaling performance of Sparse GEMM. Tested on scenario 2.

Figure 10: #Thrashing migrated with and without migration delegation.

#Thrashing gives the number of data with write access evicted from the GPU.

Tested on scenario 1.

5.5. Performance Variation

As we can see from Fig. 5 and Fig. 9, there is a significant

variation in performance irrespective of whether we are using

task migration or not. One aspect that influences performance,

irrespective of whether tasks are migrated or not, is the task

execution time. From profiling the application, we understood

that there is significant variation in the execution time of tasks

with the same granularity (1.5µs − 20µs on average, in some

instances it goes up to 200µs, Fig 11 ). While the number of

tasks with significant variation in execution time is small, this

can still hinder performance. The dynamic nature of migration

adds further variation as different tasks are migrated in each run.

Another factor influencing the performance is memory

thrashing in the GPU. When operating under out-of-core con-

ditions (the GPU memory is too small to hold the memory

footprint of the application), the runtime system implements

an eviction policy that ensures that normal operation can pro-

ceed. The policy implemented by PaRSEC is based on Least-

Recently Used. The runtime system maintains two lists sorted

in the LRU order. The first list holds all read-only data (or in

general all data that has an up-to-date version on RAM or an-

other device), and the second holds data that has been modi-

fied and that do not have another up-to-date copy on another

device. When memory is required on the GPU, the least re-

cently read-only data are evicted, and asynchronous updates of

the least recently used modified data are scheduled. When an

update completes, the corresponding data moves from the mod-

ified LRU to the read-only LRU. When no read-only data can

be released, the GPU enters a thrashing mode by evicting data

with write access and waits for the completion of tasks or data

update operations to continue to the next operation. As Fig. 10

shows, thrashing increases when we are migrating tasks, which
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Figure 11: Task execution time for GEMM task with the same tile sizes. Tested

on scenario 1 with 4 GPUs.

Figure 12: Cost of migration for task migrated before and after stage-in. Tested

on scenario 1 with 4 GPUs.

hurts performance.

5.6. Task Type

Another aspect of task migration we explored is the types

of tasks we can migrate. In previous works, only tasks whose

data had not been staged-in in a GPU were migrated away from

that GPU. In our work, in addition to migrating tasks that have

not been staged-in, we also migrated tasks whose data were al-

ready staged-in to a GPU. We calculated the cost of migration

as the time interval between when the task was selected in the

source GPU for migration and when all its data were staged-in

to the destination GPU. When we measured the cost of migra-

tion, we saw that there was not much difference between the

average cost of migrating different types of tasks (Fig. 12). This

is because the major contribution to the cost of migration is the

stage-in cost. When we migrate tasks whose data has not been

staged-in, we may have to do both host-to-device (H2D) data

transfer as well as device-to-device (D2D) data transfer (from

our experiments, we see that in case of tasks that have not been

staged-in, we have had a high percentage of H2D data transfer).

On the other hand, tasks whose data has already been staged-in

the data transfers are exclusively D2D. When we measured the

cost of data transfer, we found that it is less for tasks whose

data are already available on some GPU, due to the bandwidth

of NVLink (Fig 13). Due to these reasons, we conclude that

we may migrate tasks irrespective of whether their data were

staged-in.

Figure 13: Stage-in cost of task with both H2D and D2D data movements and

tasks with only D2D data movements. Tested on scenario 1 with 4 GPUs.

Figure 14: Performance of different selection policies. Tested on scenario 1.

5.7. Selection policies

Fig. 14 shows the performance of different selection poli-

cies for the Sparse GEMM benchmark. From the figure, we

see that Single-try gives a slightly better average performance

than the rest, while Task-affinity gives the worst performance.

Single-try gives the best performance even when the tasks it mi-

grates are less than the rest of the selection policies (Fig. 15).

This is because it holds the lock on the shared queues only while

examining the first task. All the other policies hold the lock un-

til a required task is found or all the tasks in the queue have

been examined. During this lock, the progression of other tasks

is stalled. The performance is worst from Task-affinity as it is

difficult to find tasks that operate on the same data, and a lot of

clock cycles are wasted looking for tasks. So while migrating

tasks is important for better performance, we can conclude that

it is also important not to hold up the progression of other tasks.

5.8. Chunk Size

We also tested to see if chunk size affects performance.

From Fig. 16, we can see no direct correlation between perfor-

mance and chunk size. Neither is there a correlation between

chunk size and average task migrated. This result is in contrast

with distributed load balancing, where chunk size plays an in-

fluential role in performance [22]. We are not claiming that mi-

grating a chunk of tasks is entirely pointless; rather, we claim

that it will not work in a runtime like PaRSEC. In PaRSEC,

each data movement is separate. For instance, if a task requires

9



Figure 15: Number of tasks migrated for different selection policies. Tested on

scenario 1.

Figure 16: Impact of chunk size(selection policy Single-pass, #GPU=4). Tested

on scenario 1.

three data copies, we will have to do three separate data trans-

fers into the GPU that will execute the tasks. At present, in

PaRSEC, there is no option to batch these together into a single

data transfer. Similarly, when we migrate a chunk of tasks, we

are not batching the data transfers together. This lack of batch-

ing may be why migrating a chunk of tasks does not seem to

affect performance.

5.9. Without advice on preferred GPU

In previous scenarios, the application developer provided

strong hints for load balancing via the preferred GPU mecha-

nism. To evaluate how automatic migration can simplify the de-

velopment of multi-GPU applications, we now consider scenar-

ios where the programmer does not provide these hints. Tasks

are mapped entirely based on PaRSEC’s locality and load-

based algorithm without any input from the developer. From

Fig. 17(a), we can see that the advice does not work in all

instances, and in some cases, actually worsens performance.

We can also see that with (Fig. 17(b)) and without the advice

(Fig. 17(c)), dynamic task migration gives better performance.

So with dynamic task migration, the developer can design an

application without worrying about the load imbalance of the

application.

One of the main challenges of building multi-GPU appli-

cations is designing the application such that the work is fairly

distributed among the available GPUs. In the past, these load-

balancing decisions had to be made by the application devel-

oper. PaRSEC solved this to a point where the decision is made

by the runtime with some input from the application developer.

Dynamic task migration takes this further where load balancing

is achieved without any input from the application developer

and moreover, this does not require any additional program-

ming effort from the application developer. In addition, the load

Figure 17: Performance of migration without device advice, with both epilogue

completion and migration delegated to co-manager. Tested on scenario 5.

balancing is not bound by the type of tasks as it will work for

any kind of tasks without any additional programming effort.

5.10. Without load-based mapping

PaRSEC employs a load-based task mapping when the

locality-based mapping fails. To do this, PaRSEC keeps track

of the load in each GPU and when PaRSEC cannot find a

locality-based mapping for a task it maps the tasks to the least

loaded GPU. We experimented to see if dynamic task migra-

tion can replace this load-based task mapping. To do this we

mapped the tasks to the first GPU if the locality-based mapping

fails. From Fig. 18 we can see that dynamic task migration

cannot replace load-based task mapping, moreover, it performs

better when employed alongside load-based task mapping.

At the same time, we can see that when load-based map-

ping is not used, the runs with migration vastly outperform the

runs without migration, irrespective of the number of GPUs

employed. From this experiment, we conclude that the per-

formance of an application that does not employ task migration

will largely depend on the load calculation used in the underly-

ing runtime. To test this beyond this experiment, we need to test

migration on a more imbalanced application and observe its ef-

fects on different numbers of GPUs. Unfortunately, there aren’t

any other applications implemented in PaRSEC that have an

imbalance between GPUs in the node, and implementing such

a real-world application in PaRSEC is beyond the scope of this

work.

10



Figure 18: Performance of migration without load-based task mapping, with

both epilogue completion and migration delegated to co-manager. Tested on

scenario 1.

#GPU

Without

Migration

(Gflops/s)

With

Migration

(Gflops/s)

2 10213 - 10241 10221 - 10235

4 15805 - 15873 15396 - 15877

8 18037 - 18109 18002 - 18080

Table 1: Performance of Dense GEMM benchmark with and without task mi-

gration. Tested on scenario 3.

5.11. Regular Application

As explained in Section 3.4 PaRSEC uses a locality-based

algorithm to map tasks to GPUs. If a GPU already holds some

data required by the task in its memory, then the task is assigned

to that GPU. If none of the task’s data are currently held by any

GPU, the task is assigned to a GPU based on the user’s advice

or the GPU’s estimated load. If this load calculation is wrong,

the task mapping can be imbalanced. In PaRSEC the user can

also set a load skew. For instance, a load skew of 20% means

that PaRSEC will schedule tasks on the preferred GPU or the

GPU that has the task data except if it is loaded 1.2 times as

much as the best load balance option. We used the load skew

value to compare how task migration can be helpful when the

load calculation goes wrong.

Tables 1, 2, and 3 show the performance of a regular ap-

plication with and without task migration. For regular appli-

cations, we chose the dense GEMM and dense Cholesky fac-

torization from the DPLASMA suite [23]. DPLASMA is a

dense linear algebra package for distributed, accelerated, het-

erogeneous systems implemented using PaRSEC. It ports the

Parallel Linear Algebra Software for Multicore Architectures

(PLASMA) algorithms to distributed memory.

Table 1 shows the performance of dense GEMM benchmark

with and without task migration. From the table, we can see that

there is not much difference between the performance of both.

On the other hand, the situation is different for dense Cholesky

benchmark. Table 2 shows the performance of dense Cholesky

benchmark when there is no load skew. From the table, we can

#GPU
Normal Load

Without

Migration

With

Migration

2 8590 - 9218 9198 - 9341

3 11634 - 11963 13384 - 13688

4 14200 - 14805 15535 - 15615

5 15400 - 16148 17374 - 17537

6 16207 - 16878 17900 - 18074

7 16822 - 18321 18690 - 18954

8 17969 - 18556 18316 - 18590

Table 2: Performance of Dense Cholesky benchmark, with and without task

migration, when load calculation is normal. Tested on scenario 6.

#GPU
Skewed Load

Without Migration

(Gflops/s)

With Migration

(Gflops/s)

2 7476 - 7742 9569 - 9928

3 9534 - 9760 13370 - 13643

4 12479 - 13544 15611 - 15798

5 14699 - 16850 17355 - 17825

6 17481 - 18089 18015 - 18239

7 17509 - 18235 19021 - 19216

8 17704 - 18518 18705 - 18899

Table 3: Performance of Dense Cholesky benchmark, with and without task

migration, when load calculation is skewed. Tested on scenario 6.
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Figure 19: Performance of task migration for the BSpGEMM benchmark on a

real-world sparse matrix generated by a Coupled-Cluster Singles and Doubles

method (CCSD) electronic structure model. Both epilogue and migration dele-

gated. Scenario 4.

Figure 20: Imbalance of BSpGEMM benchmark on a real world sparse ma-

trix generated by a Coupled-Cluster Singles and Doubles method (CCSD) elec-

tronic structure model. Both epilogue and migration delegated. Scenario 4.

see that the performance is better with task migration. Table 3

shows the performance of dense Cholesky benchmark with 80%

load skew. In this case, also, the performance is better with task

migration. On the other hand, a skew of 80% did not show

much change in the performance of dense GEMM benchmark.

From these experiments, we can conclude that regular ap-

plications can also benefit from task migration and while task

migration may not improve the performance for some regular

applications, it does not degrade the performance. We also con-

clude that when load calculations are wrong for an application,

task migration can improve performance, but the improvement

is not on par with a well-balanced application.

5.12. Practical Application

Finally, we also tested task migration when computing A ×

AT , where A is a sparse matrix generated by a practical appli-

cation - Coupled-Cluster Singles and Doubles (CCSD) method

electronic structure model. As established earlier, one crucial

element impacting performance of load balancing is the imbal-

ance of the task mapping across the different GPUs. Fig 20

calculates this imbalance for Scenario 4 using Eq. (1). From

Fig 20, it becomes apparent that the imbalance falls within the

range of 0.075 to 0.250 (especially when compared to Scenario

1 detailed in Fig. 8 ), which is notably small. Consequently, op-

portunities for achieving load balancing through task migration

are also limited due to this reduced level of imbalance.

Another factor influencing the performance is the problem

size. The Sparse Matrix generated by the CCSD method is

small compared to the synthetic benchmarks, so the number

of tasks available for dynamic migration is also small. Even

with these limitations, we can see that the performance of the

A × AT operation is better with task migration (Fig 19), even if

the performance gain is small (speedup between 3%-12%).

6. Conclusion

In this paper, we examined whether application perfor-

mance can be improved by migrating tasks between GPUs,

and tested different aspects of migration using Block Sparse

GEMM. We showed that dynamic load balancing through

work-sharing improves performance if an application is imbal-

anced. We also showed that the performance of task migration

is better when the imbalance in the application is higher and

that having a co-manager thread, in addition to a GPU man-

ager thread, to migrate tasks improves performance. Moreover,

the performance improvements, through dynamic load balanc-

ing between GPUs, were achieved without any additional pro-

gramming effort from the application developer.

The benchmark we used is most imbalanced when the num-

ber of GPUs is fewer than 5, so the performance gain from mi-

gration is also greatest for fewer than 5 GPUs. At the same

time, when load mapping is not used, dynamic migration gives

better performance irrespective of the number of GPUs. We

think this is application-dependent: based on the application’s

DAG and how runtime calculates the load, the imbalance can

vary for different applications for different numbers of GPUs.

Due to the dearth of imbalanced applications implemented for

PaRSEC, we were not able to explore this further.

When choosing tasks to migrate, we found that whether task

data are already resident on the GPU is not an important factor.

In addition, we showed that selection policies and chunk sizes

do not have a significant effect on the performance of task mi-

gration, unlike in distributed work stealing. Our experiments

also showed that dynamic task migration is a good alternative

to load balancing with the help of users’ advice on task distri-

bution.

The concepts discussed here are applicable to any runtime

that keeps a list of tasks earmarked for GPU assignment but

pending scheduling. The runtimes should also necessitate task

specifications to describe the data it works on, and where they

reside. These conditions are true for most task-based dataflow

programmingmodels but not for control task-based control flow

programming models. In addition to adhering to the afore-

mentioned conditions, PaRSEC employs its own GPU mem-

ory management protocol. This approach proves highly eco-

nomical, given that the cudaMalloc() function is invoked just

once throughout application execution. The disadvantage of

this scheme is that memory will be allocated in blocks, and

there are situations where more memory will be allocated to

tasks than required. This is an acceptable shortcoming when

we consider that each task may require N number of data allo-

cations, and there can be thousands or millions of tasks in an

application. The cost of migrating a task may be more expen-

sive for a different task-based dataflow model if the memory

allocation is done in an ad-hoc manner.

It’s important to highlight that in PaRSEC, each data item is

treated as an independent entity, even if it’s linked to multiple
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tasks. It has a separate life cycle that depends on the tasks that

operate on it but also on other aspects, such as the number of

readers the data has (which can be manipulated independently

of the tasks that operate on it). This approach enhances the

flexibility of data movement across memory spaces. In contrast,

certain task-based dataflow programming models package tasks

and data as a unified unit, potentially complicating task migra-

tion.

One aspect of CUDA optimization we tried to explore in

PaRSEC is CUDA Graphs. As we understand CUDA Graphs,

they would be an interesting tool to submit an entire DAG of

operations directly onto the GPU. The main challenge in im-

plementing CUDA Graphs in PaRSEC is that CUDA Graphs

can only manage dependencies of tasks that run on the same

device. In PaRSEC, this is not guaranteed - a successor of a

task may have a CPU-only kernel, in which case it cannot be

executed on a GPU, or the successor may be mapped to execute

on a different GPU. Additionally, in PaRSEC, all the tasks sub-

mitted to the GPU are ready-tasks (tasks whose inputs are all

ready to be used). If we build a CUDA Graph with the set of

tasks ready to execute, that graph will be trivial, as all tasks are

independently ready (although some tasks could depend on the

same input transfer, no task would depend on the completion

of another task). If we take a sub-graph of the task DAG that

the scheduler decides will execute on the same device, and there

are no other dependencies in input, it would be possible to build

a CUDA Graph, but this would involve DAG unrolling. DAG

unrolling is a scenario where we store the entire task DAG or a

section of the task DAG in memory. As can be imagined, this is

a costly operation memory when memory is taken into consid-

eration, and the sub-graph we derive from this DAG unrolling

can be very small, negating all the advantages derived from the

CUDA Graphs.

We based our decision on the feasibility of migration on

the count of available tasks within a GPU. This approach can

be readily substituted with a cost model or a heuristic model.

Many of the existing cost models are developed around task ex-

ecution duration, yet this approach’s accuracy comes into ques-

tion, as highlighted in Section 4. For instance, tasks of the same

type working on identical data dimensions can exhibit substan-

tial variations in execution times. An alternative approach in-

volves identifying the critical path within the task graph and

constructing a cost model centred on this critical path. How-

ever, this method also assumes uniform execution times for

tasks of the same type. Furthermore, it necessitates foreknowl-

edge of the overall task DAG. Another challenge lies in the

application-specific nature of these cost models, demanding up-

dates for varying applications and more work for the application

developer. Utilizing task count presents a more universally ap-

plicable approach across all applications, even though it might

not yield optimal performance for every scenario.

As a future extension of this work, we will explore whether

migrating GPU tasks between nodes will improve performance

in a distributed setting.
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