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Abstract—Most contemporary HPC programming models as-
sume an inelastic runtime in which the resources allocated to an
application remain fixed throughout its execution. Conversely,
elastic runtimes can expand and shrink resources based on
availability and/or dynamic application requirements. In this
paper, we implement elasticity for PaRSEC, a task-based dataflow
runtime, using inter-node GPU work stealing. In addition to
supporting elasticity, we demonstrate that inter-node GPU work
stealing can enhance the performance of imbalanced applications
by up to 45%.

Index Terms—Distributed Work Stealing, Elastic computing,
Malleable computing, Task-based programming, Dataflow, PaR-
SEC

I. INTRODUCTION

The computational capabilities of high-performance com-
puting (HPC) systems are continually advancing, pushing the
boundaries of exascale computing in recent times. However,
the dominant process-centric programming models have not
kept pace with this rapid progress, as they require significant
programmer effort to efficiently manage communication and
synchronization. The task-based dataflow programming model
has emerged as an alternative, promising to provide superior
performance and scalability for applications. In this model,
an application comprises a set of tasks with dependencies
established based on the data flow between them. These tasks
can be executed in any order that preserves their dependency
relationships. Despite these advantages, a notable limitation in
task-based dataflow runtimes is the absence of features such as
“elasticity” or “malleability” as part of the runtime capabilities.

Elasticity is the ability of a runtime to dynamically adjust
to the changing resource based on the demand of the appli-
cation or the availability of resources. In High-Performance
Computing (HPC), achieving this flexibility necessitates two
components: first, a runtime capable of reorganizing data and
computations and second, a job scheduler that allows the
allocated resources to expand or shrink as needed. In this
paper, we investigate the first requirement- we explore whether
work stealing can be leveraged as a useful tool for elastic
computing in the context of the PaRSEC task-based dataflow
programming runtime.

In PaRSEC, for each task type, programmers can provide
multiple task kernels optimized for different devices, granting
the runtime system the freedom to select the most suitable
computational resource for each kernel. The runtime system
then dynamically determines when and where to execute these
kernels. PaRSEC advocates for a clear separation of concerns
in application development. It employs a domain-specific
language (DSL) to describe the Directed Acyclic Graph (DAG)
of tasks that define the application’s algorithm, while the
scheduling of these tasks on the available computing resources
becomes a runtime decision. This scheduling is driven by
specific optimization criteria, aiming to minimize application
execution time on the target system. Crucially, PaRSEC’s
runtime system takes on the responsibility of managing data
movement between devices and between the host and devices
and coordinating the execution of tasks on these devices. This
occurs without intervention from the programmer, achieving
the desired separation of concerns.

Work stealing has previously been demonstrated to enhance
application performance by improving the load balancing
between execution units. Most evaluations of work stealing,
especially in a distributed context, have focused on multi-
threaded CPU execution. In many high-performance comput-
ing systems today, GPUs are the primary source of compu-
tational power due to their greater memory bandwidth and
available parallelism. Consequently, most modern applications
are designed with the goal of fully harnessing the potential
of GPUs. This paper describes the implementation of work
stealing between GPUs in different compute nodes and how
it can be utilized for elastic computing.

The main contributions of this paper are to:

1) implement an inter-node GPU work-stealing mechanism
for a task-based dataflow programming model and show
how an imbalanced benchmark can benefit from inter-
node GPU work-stealing; and

2) demonstrate how an inter-node GPU work-stealing
mechanism can be employed for elasticity within a task-
based dataflow programming model.



II. RELATED WORK

In certain scenarios, achieving load balancing through work
stealing and work sharing is regarded as a form of elasticity;
however, in this paper, elasticity solely pertains to the capacity
to expand and shrink the number of compute nodes available
for an application. Expand signifies the action of adding
compute nodes, while shrink denotes the action of removing
the compute nodes. We will also use the term resize to
encompass both expand and shrink operations.

A. Elasticity via Fault Tolerance

Fault tolerance employs a checkpoint and restart approach
to address faults. In this method, an application periodically
records its current status to storage as checkpoints. When an
error occurs, the application can resume from a prior state by
retrieving the relevant checkpoint. This mechanism can also be
used to implement elasticity, where the application can resume
from a checkpoint during a resize operation instead of a fault.

Vadhiyar and Dongarra [15] implement a checkpointing
library and a runtime support system that can use this library.
The user is responsible for calling the function inside an
application to specify the checkpoints and restoring the state
in case of a resize. The main drawback of this system is
that the user has additional responsibilities. Another issue is
that the runtime support system relies on a daemon process,
necessitating its initiation on each node prior to launching the
application. Additionally, the user must supply a configuration
file to the daemon, providing it with essential communication
information such as port number.

Process Checkpointing and Migration (PCM) [4] employs
the Internet Operating System [16] as its foundation for
enabling elasticity. The Internet Operating System serves as
middleware with capabilities encompassing the distribution of
computations among actors, the orchestration of dynamically
evolving resources, and the load distribution across different
nodes. Within this system, it is possible to spawn new MPI
processes or merge existing ones, thus facilitating elasticity.
However, PCM’s compatibility is limited to the Internet Oper-
ating system. Additionally, application developers are respon-
sible for explicitly defining the data redistribution strategy in
the event of a resizing operation.

Lemarinier et al. [7] extend the Scalable Checkpoint Restart
(SCR) library [9] to implement elasticity in MPI applications,
by enabling an MPI process to access a checkpoint file
written by another MPI process. User-Level Failure Mitigation
(ULFM) [1] provides functionalities to grow and shrink the
number of MPI processes in an application. While this has
been used to deal with faults, it can also used to implement
application elasticity. In both cases, the disadvantage is that
the application developer must integrate fault tolerance into
the application logic.

The main disadvantage of elasticity based on fault tolerance
is that it requires checkpointing. While the cost of check-
pointing is acceptable to mitigate faults that would require
an application restart, it is prohibitively expensive to use

purely for elasticity. Another disadvantage is that the user must
incorporate the checkpointing APIs into their application.

B. MPI Elasticity

Comprés et al. [3] extend MPI by introducing supplemen-
tary APIs designed to facilitate elastic computing. Application
developers can incorporate specific function calls that enable
the addition and removal of processes from an MPI communi-
cator at synchronization points. Additionally, this framework
is seamlessly integrated into the SLURM job scheduler. The
main drawback of this method is that it does not work with
other job schedulers and increases the complexity of the MPI
implementation.

Flex-MPI [8] is a library that adds elasticity functionality to
MPICH. Flex-MPI actively monitors the application’s behav-
ior using PAPI and PMPI, collecting information to predict
the application’s future performance. However, one notable
limitation of Flex-MPI is that it can expand to accommodate
any number of MPI processes, but it lacks the capability to
reduce the number of processes beyond the initial count in the
communicator. Additionally, users must specify a performance
objective to determine whether adaptation to the number of
processes is necessary.

ReSHAPE [13] has a Job scheduler that extends GEMS [14]
with support for resizing the resources allocation for a job
and a programming model that includes the resizing library.
The library can redistribute the data via MPI using algorithms
provided in the library. The library also contains API calls to
interact with the GEMS scheduler. The decision to grow or
shrink the number of processes is taken by the GEMS sched-
uler based on the performance feedback from the application.
The main disadvantage of this system is that it works only
with the GEMS Job scheduler.

The main disadvantage of MPI-based approaches is that
users must make significant changes to the application code
to integrate the APIs that support elasticity.

C. Task-based Runtime Elasticity

Dynamic Management of Resources (DMR) [6] is a frame-
work built on the OmpSs runtime, designed to offer elasticity
with the SLURM job scheduling system. In this model, the
application periodically transmits information to SLURM at
synchronization points. Based on this information, SLURM
may either increase or decrease the number of MPI pro-
cesses. Furthermore, the SLURM job scheduler is extended
to execute resizing operations based on the overall status
of the High-Performance Computing (HPC) system. Once a
resizing decision is communicated to the OmpSs runtime, it
undertakes data redistribution in line with the altered count of
MPI processes. This approach is tailored to work exclusively
with a specific SLURM implementation, and it necessitates
active involvement from application developers in managing
the resizing operation.

Charm++ [11] uses the Torque/Maui job scheduler to imple-
ment elasticity. In this model, a Converse ClientServer (CCS)
interface is used to interface between the runtime and the job



scheduler. When submitting a job to the Torque/Maui sched-
uler, an upper bound on resources needed is also required. The
job scheduler can then decide on the resize operation based on
the jobs in execution. The main disadvantage of this method
is that it works only with the Torque/Maui job scheduler.

Task-based runtimes that support elasticity also suffer from
the same disadvantage as the MPI-based elasticity, as they
require a specific job scheduler and this approach will not
be portable to different HPC systems with different job
schedulers. None of these runtimes employ work stealing to
implement elasticity.

III. PARSEC

PaRSEC is a distributed heterogeneous task-based dataflow
runtime. In PaRSEC user defines the task and the dependency
relation between them using a representation model called
Job Data Flow (JDF). A task can have multiple task bodies
intended for different types of devices. At present, in addition
to task bodies for CPUs, PaRSEC supports task bodies for
NVIDIA, AMD and INTEL GPUs.

While a user can select a preferred device, the execution of
the task is the prerogative of the runtime. PaRSEC also handles
communication and synchronization and provides high-level
APIs for data distribution. One of the main limitations of
PaRSEC is that the task mapping to compute nodes is fixed.
We remove this limitation in this paper.

A. GPUs in PaRSEC

In PaRSEC, when all the data a task needs to execute
is available locally, it is said to be ready. The ready tasks
are pushed to a queue that the worker thread can access.
Depending on the scheduling policy the queue can be node-
level, NUMA-level or thread-level. Work stealing is possible
between each thread depending on the scheduling policy
employed. A node-level scheduler can be used by each thread
to dequeue a task from the scheduler queue. The worker thread
then decides whether to execute the task on a CPU or a GPU.

If the decision is made to execute a task on the GPU, the
task is handed over to a GPU manager thread. If no manager
thread is found for a GPU, the worker thread itself becomes the
manager thread. Once the task is available with the manager,
it pushes the task to a GPU queue and then progresses the
tasks in the order they arrived. Once a task is handed over to
the GPU manager, its entire life cycle - from moving data to
the GPU memory, executing the task in the GPU, activating
all its successors and moving data from the GPU memory to
the host memory - is managed by the manager thread.

A PaRSEC task goes through a series of steps before
it is executed by the GPU. Each step consists of a set
of host computations and asynchronous orders sent to the
various streams of the GPU. Completion of the asynchronous
commands in a stage triggers the start of the next stage. We
call the transition of the task from one step to another task
progression. Between each stage, the runtime manages a queue
of tasks. Each stage consumes a task from its queue, and the

asynchronous completion of a stage for a task triggers the
insertion of this task in the next-stage queue.

1) Task mapping: The CPU thread decides which GPU to
map the tasks to. PaRSEC relies on data locality and
simple load estimates to make this decision.

2) Stage-in: The task is moved to the stage-in queue. For
every task in this queue, the GPU manager moves the
required version of the task’s data from the host memory
to GPU memory (or GPU memory to GPU memory) if
it is not already on the GPU.

3) Task offloading: The task is moved to the execution
queue. The task in this stage has all its data available
on the GPU memory, and the manager offloads the task
from this queue to the GPU for execution using the
execution stream. PaRSEC still controls the task as long
as it is in the execution queue and task offloading has
not commenced.

4) Task execution: The task is launched on the GPU. Once
launched, the task is not the responsibility of the GPU
manager until it is completed, and the execution of the
task depends on the CUDA internal scheduler policies.

5) Stage-out: Task execution is completed and the task is
moved to the stage-out queue. From this point on, PaR-
SEC regains control of the task. The manager transfers
the task data from the GPU memory to the host memory
if such a transfer is required.

6) Task epilogue: The runtime system analyses the task to
discover its successors and computes the necessary data
movements and task completion notifications.

B. Handshake Mechanism in PaRSEC

During the epilogue phase of a task, it sends the required
data to its successors using the communication module. If one
of the successors is mapped to a remote node, the thread
responsible will initiate a handshake mechanism, as shown
in Fig. 1. The communication module in the source node
will send the information to the communication module in
the destination node. Based on the information provided,
the communication module in the destination will allocate
memory and fetch the data. Once the data fetch instruction is
received, the communication module in the source will send
the data to the destination. All aspects of the handshake hap-
pen asynchronously in PaRSEC. When all the data becomes
available, the task is marked as ready and the task is pushed
to the scheduler queue.

IV. ADDING DISTRIBUTED WORK-STEALING TO PARSEC

We added a new distributed work-stealing module to the
PaRSEC runtime. The module has three main functions:

1) Initiate stealing request on a starving node.
2) Select task and migrate task on a busy node.
3) Handle all actions related to a migrated task on a

starving node.
Starvation is detected on a GPU when the number of tasks

available on that GPU goes below a threshold. A particular
GPU may be starving even though other processing elements



Fig. 1. PaRSEC handshake mechanism

in the node are not. In our previous work, we had shown that
some applications may create a node-level imbalance where
some GPUs have a glut of tasks while some may be starving.
In this work, we also determine node-level starvation when
the number of tasks available to all the GPUs in a node drops
below a threshold. The starvation is detected by the worker
threads, and any worker thread can initiate a steal request.
While any worker thread can detect starvation and initiate a
steal request, at any time, there can be only one outstanding
steal request from a particular node.

If there is no outstanding steal request, the work-stealing
module will proceed with sending the steal request to a victim
node. One of the main design principles of our stealing module
is not to collect load information to choose the victim node.
Collecting load information is expensive in terms of data
transfer, and it is not scalable. Another option some runtimes
have used is to collect load information from a subset of
nodes and limit the stealing to this subset of nodes. This
strategy reduces the load balancing opportunities while still
requiring data collection. Another drawback is that the load
information collected may not represent the current load as
the task execution is dynamic. Due to the above reasons, we
have employed a random victim selection policy. Once the
victim node is decided, a steal request is sent to the node
requesting a chunk size number of tasks.

Once the steal request is received by the victim node, it is
pushed to a node-level queue. Any worker thread can process
a steal request by transitioning to a stealing thread, but at any
instant, only one thread in a node can assume this role. This
design choice was made to reduce contention. In our previous
work, we found that contention on the GPU level queue is one
of the main factors that hamper performance. Allowing only
one thread to process the steal request ensures that only one
thread competes with the manager thread for the GPU tasks.

As mentioned earlier, PaRSEC has four queues per GPU:
device queue, stage-in queue, execution queue and stage-out
queue. For node-level migration, tasks are only taken from

the device queue. For each GPU, the stealing thread locks
the device queue and attempts to remove a task. A task is
stolen only if it does not result in starvation for that GPU.
We don’t migrate tasks from the stage-in queue to ensure that
the manager thread has some tasks to progress and there is no
starvation on the victim node. The tasks in the execution queue
already have all their data in the GPU memory, so migrating
these tasks to another node would be expensive. The tasks in
the stage-out queue have already been executed, so there is no
need to migrate tasks in that queue.

A. Victim Selection

The steal request policy determines the victim node to
which a steal request will be sent. In cases where global
information about the load is not collected, the Random policy
has demonstrated significant effectiveness in selecting the
victim node [10]. Under the Random policy, a steal request is
dispatched to a randomly chosen node. Regardless of whether
the request is fulfilled by the victim node, a response is sent
back to the thief node, and the process is repeated.

We modified the Random policy to achieve greater success
in victim selection. Each thief node records the last victim
node that resulted in a successful steal. A thief first sends
each new steal request to its last-recorded successful victim
node. If the victim node cannot fully satisfy the request, it will
resend the steal request to the last successful victim recorded
on this victim node, acting on behalf of the original thief node.
This process is repeated N times, where N is the maximum
hop count for the steal request. In the absence of a successful
victim, the request will be sent to a random node.

B. Migrating Tasks

Tasks in PaRSEC are instances of a task class. The member
functions of a task class describe each aspect of the task. For
example, a task class will describe the kernels a task executes,
which devices the tasks can be executed on, how it sends the
data to the successors and so on. Tasks of the same task class



execute the same code, but each task has a unique identifier,
and the data they operate on may differ.

In PaRSEC, all nodes have access to all task classes. As
every task in a class has the same properties, we can recreate
a task in any thief node as long as we make the data items and
the task unique ID available on the thief node. As the stealing
thread steals from a device queue, every task it steals is ready,
i.e., all the data items it needs are available locally. So the
stealing thread at the victim node can create a message for
the thief node that describes the data items of the task and its
unique ID. The stealing thread then sends this information to
the thief node. The thief node uses the handshake mechanism
described in Section III-B to fetch each data item of the stolen
tasks from the victim node. Once the data items are available,
the thief node can recreate the tasks using the unique ID of
the task received from the victim.

V. ADDING ELASTIC MAPPING TO PARSEC

In PaRSEC, the mapping of a task to a node is fixed, and
each task can independently discover the fixed mapping of
its successor task. This is an important restriction, as the
fixed mapping of a task allows the communication module
to send the data item to specific nodes using the handshake
mechanism (Section III-B). While this fixed task mapping
facilitates cost-effective and asynchronous data transfers, it
becomes a hindrance when attempting to implement a flexible
runtime system.

We extended PaRSEC to support elasticity for iterative
applications, by allowing a resize operation between iterations
to either expand or shrink the number of compute nodes. When
engaging in the expand operation, the newly added nodes can
utilize the migration module to acquire tasks from other nodes.
Once these tasks have been migrated to the new nodes, any
subsequent attempts to migrate them to different nodes will
be prohibited. In subsequent iterations, the predecessor task
of this particular node will automatically send the specifics
of the associated data item to the new node. To facilitate
this procedure, when a task is migrated, information about
the migrated task is recorded on the victim node, while
corresponding details about the received tasks are recorded on
the thief node. If this information is available for a particular
task, the new task mapping overrides the fixed task mapping.
This strategy ensures that a task, once migrated, will remain on
the newly added nodes unless a shrink event occurs, preventing
further migrations.

Every node within the system is paired with a backup node,
facilitating the implementation of shrink operations. During
the shrink operation, all nodes in the system are notified about
the reduction in scale via a broadcast message. In subsequent
iterations, any messages directed to the node that was taken
offline will be routed to its designated backup node. As the
backup node(s) may now have significantly more work than
other nodes, task migration will be employed to redistribute
tasks to achieve load balancing. In this phase, any task may be
migrated; not only those tasks that were moved to the backup
node(s) due to shrinking.

VI. RESULTS

A. Experimental Setup

The experiments were conducted on the Gadi supercom-
puter in the National Computing Infrastructure, Australia.
Each GPU node on Gadi has two 24-core Intel Xeon Scal-
able Cascade Lake processors with 3.2GHz clock speed and
192GiB of host memory, and four NVIDIA V100 GPUs with
32GiB of HBM2 memory. All experiments were run using
OpenMPI (v4.1.4), Intel-MKL (v2020.3.304), CUDA (11.7.0)
and GCC (v10.3.0). As there is only one MPI process per node,
node and process are used interchangeably in this section.

Gadi only permits a maximum of 20 GPU nodes to be
allocated per job, so our experiments are limited by this
number. As explained earlier in this paper, we only investigate
whether task-based dataflow runtime can accommodate elas-
ticity through distributed work stealing. We are not concerned
with building a scheduler that supports elastic resource allo-
cation. In a complete system, this task-based dataflow runtime
would be complemented by a job scheduler that instructs the
runtime to resize. Due to the absence of such a scheduler,
in these experiments, we perform multiple iterations of the
application task graph and perform the resize operation during
the third iteration of each application.

B. Benchmarks

We use three benchmarks in the experiments - the Block-
Sparse GEneral Matrix Multiplication (BSpGEMM) [5],
Block-Dense GEneral Matrix Multiplication (GEMM) and
Block-Dense Cholesky Factorization [2]. BSpGEMM is in-
herently imbalanced due to the non-uniform structure of the
physical problem it represents.

C. Inter-node GPU Work Stealing

We first investigated the potential benefits of inter-node
GPU work stealing for an imbalanced application, by con-
ducting strong scaling experiments using the BSpGEMM
benchmark, which is inherently imbalanced according to the
tile sparsity pattern. Depending on the tile pattern, some nodes
may have a lot of tasks, while others may have very few.
Establishing a balanced static distribution for all possible tile
patterns is challenging. Table I illustrates the strong scaling
performance of the BSpGEMM benchmark, where both Matrix
A and Matrix B exhibit 50% sparsity. The results indicate
a significant improvement (between 16% - 45% speedup) in
application performance when work stealing is employed.

TABLE I
WEAK SCALING PERFORMANCE OF INTER-NODE GPU WORK-STEALING

TESTED ON THE BSPGEMM BENCHMARK. SPARSE MATRIX A
DIMENSIONS 150k × 300k, TILE SIZE 1k × 1k, SPARSITY 50%. SPARSE

MATRIX B DIMENSIONS 300k× 300k, TILE SIZE 1k× 1k, SPARSITY 50%.

Nodes
Performance without
Migration (GFLOP/s)

Performance with
Migration (GFLOP/s)

4 841 - 875 1255 - 1270
8 1495 - 1841 2162 - 2664

16 3120 - 3813 4140 - 4445



We also tested whether the inter-node GPU work stealing
is effective when the application is already balanced statically.
Table II gives the performance of the GEMM benchmark and
Table III gives the performance of the Cholesky factorization
benchmark. In both tables, we can see a small improvement
in performance with work stealing.

TABLE II
STRONG SCALING PERFORMANCE OF INTER-NODE GPU WORK-STEALING

TESTED ON THE GEMM BENCHMARK. MATRIX A DIMENSIONS
100k × 200k. MATRIX B DIMENSIONS 200k × 100k. TILE SIZE 1k × 1k.

Nodes
Performance without
Migration (GFLOP/s)

Performance with
Migration (GFLOP/s)

4 14957 - 19975 15329 - 20975
8 31077 - 35486 33650 - 35994
16 49525 - 52667 51246 - 53870

TABLE III
STRONG SCALING PERFORMANCE OF INTER-NODE GPU WORK-STEALING

TESTED ON THE CHOLESKY FACTORIZATION BENCHMARK. MATRIX A
DIMENSIONS 200k × 200k, TILE SIZE 1k × 1k.

Nodes
Performance without
Migration (GFLOP/s)

Performance with
Migration (GFLOP/s)

4 34843 - 36252 34197 - 37311
8 41414 - 44330 41614 - 45051
16 63513 - 66739 63571 - 66815

D. Elastic Expand

The performance of Dense GEMM benchmarks under
various expansion scenarios is presented in Table IV. To
determine the expected performance, we executed the same
benchmark using a total of N nodes throughout, where N =
Initial nodes + Expanded Nodes. Actual performance closely
aligns with the expected values when either two or four nodes
are added; however, actual performance falls short of expected
performance when eight nodes are added.

TABLE IV
PERFORMANCE OF Expand OPERATION TESTED ON THE GEMM
BENCHMARK. MATRIX A DIMENSIONS 100k × 200k. MATRIX B

DIMENSIONS 200k × 100k. TILE SIZE 1k × 1k.

Initial nodes = 8
Performance

before expansion
(GFLOP/s)

Expand by
Performance

after expansion
(GFLOP/s)

Expected
performance
(GFLOP/s)

31077 - 35486
2 37606 - 37652 36429 - 38842
4 40198 - 43140 40775 - 43021
8 45677 - 46929 49525 - 52667

The disparity in performance can be attributed to the fact
that, as the number of nodes increases during expansion, the
expanded nodes receive fewer tasks. This is because the ability
of work stealing to distribute the tasks depends on the available
parallelism (in this case, the number of ready tasks) at each
instant. When the number of nodes increases, the available
parallelism is not sufficient to make full use of the expanded

nodes. Therefore, while the performance improves compared
to the baseline, it falls short of the expected level.
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Fig. 2. Ready tasks available for the GEMM benchmark. Matrix A dimensions
100k × 200k, Matrix B dimensions 200k × 100k. Tile size 1k × 1k.

Similarly, the performance of the Dense POTRF benchmark
is presented in Table V, where the initial number of nodes
remains constant, but the number of expanded nodes varies.
It follows the same pattern as the GEMM benchmark, with
expansion not being as effective when eight nodes are added.

TABLE V
PERFORMANCE OF Expand OPERATION FOR THE CHOLESKY

FACTORIZATION BENCHMARK.
MATRIX DIMENSIONS 200k × 200k, TILE SIZE 1k × 1k.

Initial nodes = 8
Performance

before expansion
(GFLOP/s)

Expand by
Performance

after expansion
(GFLOP/s)

Expected
performance
(GFLOP/s)

41414 - 44330
2 46643 - 49348 46750 - 49559
4 50134 - 55706 50160 - 55974
8 50622 - 57113 63513 - 66739

In both cases, the expansion is effective for fewer added
nodes, as there are enough ready tasks to be stolen during
the expand operation. Fig. 2 displays the number of ready
from one of the nodes when the GEMM benchmark is run
on 8 nodes. The GEMM application comprises three types
of tasks: READ A tasks, READ B tasks, and GEMM tasks.
The READ A and READ B tasks read the tiles that form the
input for the GEMM tasks. In this application, Matrix A is
copied across all nodes, while Matrix B is distributed among
nodes. The number of GEMM tasks ready at a given node may
vary widely over time depending on the order in which tiles
are read. This observation is further supported by Figure 3,
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Fig. 3. Tasks completed for the GEMM benchmark. Matrix A has dimensions
100k×200k and Matrix B has dimensions 200k×100k. Tile size is 1k×1k.
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Fig. 4. Ready tasks available for the Cholesky factorization benchmark.
Matrix A has dimensions 200k × 200k. Tile size is 1k × 1k.

depicting the number of completed tasks during the course of
execution. Over an extended duration, GEMM tasks are not
triggered as their corresponding READ A tasks have not yet
completed execution. From the figures, we can see that the
Dense GEMM application has enough ready tasks (GEMM
tasks) to support stealing from another node. Simultaneously,
this work stealing becomes less effective when the number of
thief nodes competing to steal increases, as the tasks available
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Fig. 5. Ready tasks available for the Cholesky factorization benchmark.
Matrix A has dimensions 100k × 100k. Tile size is 1k × 1k.

to steal per thief decreases.
Similarly, Fig. 4 reveals the number of ready tasks for

the Cholesky factorization benchmark, indicating a sufficient
number of ready tasks to facilitate the expand operation.
However, upon reducing the matrix dimension by half, as
illustrated in Fig. 5, the application exhibits a scarcity of ready
tasks and consequently lower than expected performance.

E. Elastic Shrink

We executed the Dense GEMM benchmark under different
shrinking scenarios, comparing the performance after shrink-
ing with the expected performance calculated by running the
same benchmark using a total of N nodes throughout, where
N = Initial nodes − Shrunk Nodes. Table VI shows that the
performance after shrinking is much lower than expected.

TABLE VI
PERFORMANCE OF Shrink OPERATION TESTED ON THE GEMM

BENCHMARK. MATRIX A DIMENSIONS 100k × 200k. MATRIX B
DIMENSIONS 200k × 100k. TILE SIZE 1k × 1k.

Initial nodes = 16
Performance

before shrinking
(GFLOP/s)

Shrink by
Performance

after shrinking
(GFLOP/s)

Expected
performance
(GFLOP/s)

49525 - 52667
2 17571 - 20799 43912 - 48930
4 15321 - 17203 40775 - 43021
8 12338 - 14606 31077 - 35486

To understand this performance disparity, we measured the
total communication arising from an activation message. From
Table VII, we can see that before the shrink operation, the total
communication is consistent across all nodes. However, this
pattern shifts during the shrink operation, with increased com-
munication observed both on the backup node and on nodes
without backup designation. Furthermore, the processing of
steal requests introduces additional communication. After the
shrink operation, communication levels remain elevated.

VII. CONCLUSION

In this paper, we show that an imbalanced application can
benefit significantly from inter-node GPU work stealing. In
these applications, predicting work distribution beforehand



TABLE VII
COMMUNICATIONS DURING A Shrink OPERATION TESTED ON THE GEMM

BENCHMARK. MATRIX A DIMENSIONS 100k × 200k. MATRIX B
DIMENSIONS 200k × 100k. TILE SIZE 1k × 1k, INITIAL NUMBER OF

NODES IS 16, SHRINKING TO 12.

Communications Steal Requests
Backup Normal Backup Normal

node node node node
Before shrink 18700 18700 0 0
During shrink 157000 37400 2880 0
After shrink 107300 56400 0 0

is impractical, making it challenging to achieve fair static
distribution, particularly within a decentralized runtime like
PaRSEC, where runtime decisions are entirely decentralized.
We utilized work stealing because it operates independently at
the node level and does not necessitate information about the
load on other nodes within the cluster.

Importantly, although inter-node work stealing is less ef-
fective for an already well-balanced application, it does not
compromise performance.

Additionally, we show that inter-node GPU work stealing
can function as a mechanism for elasticity. In particular,
applications with a high degree of available parallelism (ready
tasks) approach a fair static distribution for the expanded
nodes. Conversely, applications with fewer ready tasks ex-
perience some benefits from elasticity, but their performance
falls short of the anticipated level. Furthermore, our findings
reveal that when resources are shrunk, performance fails
to meet expectations, which we attribute to the increased
communication resulting from the shrink operation.

This paper demonstrates the use of inter-node GPU work
stealing to support elasticity within a task-based dataflow
runtime. In the context of high-performance computing sys-
tems, true elasticity can be realized only by integrating an
elastic runtime with support from a batch system such as
PBS or SLURM. The runtime must initiate compute resource
allocation requests to the batch system when expansion op-
erations are underway and should be capable of releasing
compute resources during shrink operations. Facilitating this
communication between the runtime and batch system is
essential. Thus, modifications will be needed to commonly-
used batch systems to support truly elastic applications.

Although PaRSEC runtime was used for this study, any
distributed runtime that supports tasks and maintains segre-
gation between tasks and the data on which they operate can
implement distributed GPU task stealing and elasticity. Our
future plans to extend this research will incorporate a scheduler
module similar to Dask [12] into the runtime. This module will
be designed to facilitate dynamic allocation and deallocation of
compute resources seamlessly. Importantly, it will be designed
to function with any batch system without necessitating any
modifications to the existing setup.
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