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Abstract. The task-based dataflow programming model has emerged
as an alternative to the process-centric programming model for extreme-
scale applications. However, load balancing is still a challenge in task-
based dataflow runtimes. In this paper, we present extensions to the PaR-
SEC runtime to demonstrate that distributed work stealing is an effective
load-balancing method for task-based dataflow runtimes. In contrast to
shared-memory work stealing, we find that each process should consider
future tasks and the expected waiting time for execution when determin-
ing whether to steal. We demonstrate the effectiveness of the proposed
work-stealing policies for a sparse Cholesky factorization, which shows a
speedup of up to 35% compared to a static division of work.
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1 Introduction

The task-based dataflow programming model has emerged as an alternative to
the process-centric model of computation in distributed memory. In this model,
an application is a collection of tasks with dependencies derived from the data
flow among the tasks. Tasks can be executed in any order that maintains the
dependency relations between them. When compared to a process-centric model,
the task-based dataflow programming model has shown more scalability as it
exposes more asynchronicity within the application [6]. Also, the programmer
has a global view of tasks and data, while low-level problems such as scheduling
and data transfer are taken care of by the runtime.

At present, most implementations of the task-based dataflow programming
model are limited to a static work division between nodes. This paper addresses
this limitation by exploring whether distributed work stealing can be used as
an automatic load balancing method in a task-based dataflow runtime. We use
Parallel Runtime Scheduling and Execution Controller (PaRSEC) [6,7] as the
base framework. To the best of our knowledge, this is the first work in a task-
based dataflow runtime in distributed memory to use distributed work stealing
as a load balancing technique.



2 J. John et al.

1.1 Contributions

The contributions of this paper are as follows: We add distributed work stealing
to PaRSEC runtime for automatic load balancing and we extend the Template
Task Graph (TTG) to allow the programmer to decide if a particular task can
be stolen. We introduce new victim policies based on waiting time and show that
this is more efficient than the existing victim policies. We also introduce a new
thief policy based on future tasks and show that this is more efficient than the
existing thief policies.

2 Related Work

Work sharing and work stealing are two primary approaches to load balancing
in task-based programming models. In work sharing, an overloaded compute
node shares its work with the underloaded nodes, while in work stealing, an
underloaded node steals work from the overloaded nodes. Work sharing requires
information collection about the load in a set of nodes and coordination between
the nodes in this set to balance the load between them. The main disadvantages
of work sharing are that collecting load information may pose scalability issues,
and due to the asynchronous nature of task execution there is no guarantee
that the information received reflects the actual load status. On the other hand,
in work stealing, a thief node initiates a steal request based on its load and
the victim node chooses whether to allow the steal based on its load. Both
victim and thief make independent decisions without any coordination between
them. While load-balancing in task-based runtimes was first introduced in shared
memory through work stealing in Cilk [4, 9], shared memory load-balancing is
not discussed here as we are only interested in load-balancing across nodes in
partitioned global address space (PGAS) and distributed memory.

The PGAS model presents a unified global memory, logically partitioned
among different nodes. This global address space makes it possible to use global
data structures, shared between nodes, to implement load-balancing strategies.
In Habanero-UPC++ [13], each node publishes the current count of stealable
tasks in a shared variable in global address space and the work stealing decisions
are made based on this. In X10, each node maintains a shared queue to hold
stealable tasks and a local queue to hold non-stealable tasks [2,10,15,20]. A
starving node can directly steal from the shared queue of another node. X10
also enforces work sharing if work stealing fails [16]. Chapel [8] allows dynamic
task mapping i.e. a task can be mapped to any node in the system but once the
tasks are mapped to a node they cannot be stolen.

In the distributed-memory model, each node is a separate memory and exe-
cution domain. Unlike PGAS models, there are no shared global data structures
that can be leveraged for cooperation between the different nodes. Perarnau et
al. [17] study work stealing performance in MPI, but here the work stealing is
a property not of the runtime but of the benchmark itself. In Chameleon [12,
11], work sharing is possible but it can happen only at global MPI synchroniza-
tion points. Samfass et al. [18] implement work sharing in partial differential
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equation workloads but the work sharing is possible only between time steps. In
CnC [19] and Legion [3], similar to Chapel, dynamic task mapping is possible,
but once mapped to a node the tasks cannot be stolen. CnC also uses a broadcast
operation to locate data items and this operation is not scalable either.

Task-based dataflow programming model is a subset of a task-based pro-
gramming model where the execution progression is controlled by the flow of
data from one task to the next. Charm++ is a task-based dataflow runtime that
supports work sharing [1] and it is especially well suited for iterative applica-
tions. At present, there is no dataflow task-based programming model that offers
work stealing in distributed memory.

3 Adding Work Stealing to PaRSEC

PaRSEC is a heterogeneous task-based dataflow runtime, where the execution
of tasks is fully distributed, with no centralized components. Each task in PaR-
SEC is an instance of a task class and all tasks that belong to a particular task
class have the same properties except the data it operates on and its unique
id. PaRSEC supports multiple domain-specific languages (DSL) and these DSLs
help the user define the different task classes in a program, as well the depen-
dency relations between the tasks. In this paper, we focus on the Templated
Task Graph (TTG) DSL [5] as it can better handle irregular applications. An
application can be called irregular if it has unpredictable memory access, data
flow or control flow. To study whether work stealing is effective in a task-based
dataflow runtime, we added an extra module migrate to PaRSEC to do all op-
erations related to work stealing. We also changed how tasks are described in
TTG, to support work stealing.

The migrate module uses a dedicated migrate thread for all stealing related
activities. The thread is created when the PaRSEC communication module is
initialized and destroyed when the termination detection module in PaRSEC
detects distributed termination. All communication to and from the migrate
module is carried out using the PARSEC communication module. The migrate
thread constantly checks the state of the node and transitions the node to a
thief if it detects starvation. On detecting starvation, the thief node sends a
steal request to a wvictim node. The victim’s migrate thread processes the steal
request and selects tasks to be migrated to the thief node. When a task is selected
as a victim of a steal request, the input data of the victim task are copied to the
thief node and the victim task is recreated in the thief node. To implement this
functionality, we added a new function migrate to the task class. The migrate
thread invokes this function to copy the input data to the thief node. Once all
data have arrived, the thief recreates the victim task, with the same unique id,
and it is treated like any other task by the thief node.

New Task Description To give the user control over which tasks can be
stolen, we introduced another wrapper function in TTG (Listing 1.1), which
takes a function is_stealable as an additional argument (The details about
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the wrapping function are available in [5]). For instance, in a sparse linear
algebra computation, tasks of the same type may operate on a dense or sparse
tile. So the programmer may decide that tasks that operate on a sparse tile
cannot be stolen.

Listing 1.1: New TTG wrapping function

ttg ::wrapG (task_body, is_stealable , input_edges,
output_edges , task_name, input_edge_ names, output_edge_ names);

The function is_stealable has the same signature as the task body, and it
has access to the same data as the task body.

Thief policy The thief policy dictates two aspects of stealing: 1) How is a
victim node selected? and 2) What qualifies as starvation in a node? Perarnau
et al. [17] demonstrated that randomised victim node selection is best suited for
distributed work stealing, so we use the same in this paper. A naive approach
to work stealing only consider the ready tasks waiting for a worker thread as
the indicator for available load in a node and if the available ready task is
zero, starvation is assumed. We show that this is not the correct way to predict
starvation as stealing takes non-zero time, and in that time new tasks can be
activated in a starving node. So, we propose that along with ready tasks we
should also consider the tasks that will be scheduled in the near future to measure
starvation. We take the successors of the tasks in execution as the future tasks.
Based on these we tested two starvation policies:

1. Ready tasks only: a steal request is initiated if there are no currently ready
tasks.

2. Ready tasks 4+ Successor tasks: a steal request is initiated if there are no
currently ready tasks and no local successors of tasks currently in execution.

Victim Policy Victim policies impose an upper bound on the number of tasks
allowed to be stolen by a thief node. We test three victim policies:

1. Half: Half the stealable tasks are allowed to be stolen per steal request.

2. Chunk: An arbitrary number of stealable tasks is allowed to be stolen per
steal request (we went with a chunk size of 20 as it is half of the total worker
threads available).

3. Single: Only one stealable task is allowed to be stolen per steal request (this
is a special case chunk, where the chunk size is 1).

The victim policy does not guarantee work stealing. For instance, if there
are 40 stealable tasks available, the victim policy Half requests the scheduler to
return as many tasks as possible up to a maximum of 20. This is not guaranteed
to yield a task, as the migrate thread competes with worker threads, and the
worker threads may end up getting all the available tasks. So the victim policy
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makes the best effort to migrate a permissible number of stealable tasks, with
an upper bound on the number of tasks migrated.

At present, the waiting time of the task is not considered when permitting
a steal. In this paper, the victim policies have an additional condition: work
stealing is allowed only if the time required to migrate the task to the thief node
is less than the time the task has to wait for a worker thread. The waiting time
is calculated as follows:

execution time elapsed

average task execution time =
g tasks executed till now

#ready tasks
H#worker threads

waiting time = ( 1) * average task execution time

4 Experiments

The experiments were conducted on the Gadi supercomputer in the National
Computing Infrastructure, Australia. Each node on Gadi has two 24-core Intel
Xeon Scalable Cascade Lake processors with 3.2 GHz clock speed and 192 GiB
of memory. All the experiments were run using openmpi (v4.0.2), intel-mkl
(v2020.2.254) and intel-compiler (v2020.2.254). As there is only one MPI pro-
cess per node, node and process are used interchangeably in this section. All the
experiments are conducted using 40 worker threads per node.

4.1 Benchmarks

We use Cholesky factorization on a tiled sparse matrix as the benchmark to
measure the different aspects of work stealing. In this benchmark, the matrix is
divided into tiles and each tile is either sparse (filled with zeroes) or dense. In our
runs, exactly half of the tiles are dense and tiles are cyclically distributed across
nodes. We chose Cholesky factorization as the benchmark because it is a good
representative of linear algebra benchmarks, and it has been used extensively
to study various aspects of distributed computing including work-stealing. Also,
there are 4 types of tasks in Cholesky factorization — POTRF, GEMM, TRSM
and SYRK. The different task types have different execution times for the same
tile size, presenting a challenge for distributed work-stealing.

We also used the Unbalanced Tree Search (UTS) benchmark [14] to study
the victim policies. In the UTS benchmark, different trees can be created by
configuring the different features of the benchmarks.

4.2 Potential for Work Stealing

Intuitively, task stealing is most effective when there is a workload imbalance and
when there are active thief nodes. To quantify the potential for work stealing as
the computation progresses, we divided the execution time of the benchmarks
without work stealing into intervals of equal duration. Within each interval,
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whenever a worker thread successfully executed a select operation, the number
of ready tasks were polled. Using these polled ready tasks, the potential for work
stealing E? in the interval b for P processes is calculated as:

E'=1«P (1)
where I° is the workload imbalance in the interval b, calculated as:
P
Dz w} (2)

P
where w? is the workload of process i in the interval b, calculated as:

I* = maz(wh, wh, ..., wh) —

Zj’vzl O?
S 3)
w! =
maz (0%, ob, ...,ol]’\,b)

where oé’. is the jth polled value in interval b and N, is the total number of
polled values in interval b. Fig. 1 gives the potential for work stealing obtained
experimentally for the different intervals for the different number of nodes. From
Fig. 1, we see that the work stealing has the most potential at the beginning
of the execution for all numbers of nodes, remaining highest for 8 nodes as the

execution progresses.
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Fig.1: Potential for work stealing when using an interval size of 10 seconds.
(Global matrix of 10000? 64-bit elements, organized as 2007 tiles of 50? elements)

4.3 Thief Policy

The experiments on thief policy show that performance of work stealing is better
when future tasks are taken into consideration to determine starvation. Fig.2
shows the performance of a thief policy that uses only ready tasks to determine
starvation, against a thief policy that use ready tasks as well as future tasks
(‘No-Steal” in the experiments refer to the experimental runs without using work
stealing). Here, the successor tasks of tasks currently in execution are taken as
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Fig. 2: Thief policies that counts only ready tasks versus policy that counts ready
and successor tasks. (Global matrix of 10000 64-bit elements, organized as 2002
tiles of 502 elements. Four nodes, Single victim policy)
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Fig. 3: Ready tasks in a thief node when a stolen task arrives. Only ready tasks
were considered to determine starvation. (Global matrix of 10000% 64-bit ele-
ments, organized as 100 tiles of 1002 elements; two nodes)

future tasks. From the figure, we observe that the performance of work stealing is
better if future tasks are taken into consideration when determining starvation.

To understand why work stealing underperforms while using only ready tasks
to determine starvation, we counted the ready tasks in a thief node when a stolen
task arrives. Fig. 3 shows the result of this experiment and we can see that when
the task arrives the number of ready tasks in the thief node is quite high. This
means that the stolen task will have to wait a substantial amount of time before
it is selected for execution. This happens because even when there are no ready
tasks in a thief node, there may still be tasks in execution, each of which can
have multiple successor tasks. So by the time a stolen task arrives, the tasks in
execution may have added their successors to the ready queue.

4.4 Victim Policy

The previous experiments showed that work stealing reduces the variation in
execution across multiple runs. We postulated that variation occurs because all
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Fig. 4: Execution time for different victim policies on varying number of nodes.
(Global matrix of 10000% 64-bit elements organized as 2007 tiles of 502 elements.)

threads are competing to extract tasks from the scheduling queues. Thus, if the
number of threads is large, the queues will be under significant stress, and all the
locks will be conflicted leading to large variation in the task acquisition, and thus
in the task execution. The scheduler used here use node level queues that are
ordered by priority, so the select operation can only be done sequentially on all
threads. Additionally, in sparse Cholesky factorization, there are a substantial
number of tasks that do not do any useful computation, as they are operating
on a sparse tile. In such cases, the threads will be spending more time waiting
to extract the work, when compared to actual task execution. Fig. 4 shows the
execution time for different victim policies across different numbers of nodes
for multiple runs and it shows that work stealing reduces the variation in the
execution time.

The speedup from work stealing (against ‘No-Steal’ as the baseline is not
uniform across different numbers of nodes as shown in Fig. 5. For each victim
policy, speedup is highest (35%) for 8 nodes, as the potential for work stealing
is high (see Fig. 1). The speedup decreases for larger number of nodes as the
potential for work stealing decreases.

Waiting Time In all the above experiments, victim policies permit a steal only
if the waiting time to execute a task is more than the time taken to steal the
task. Fig. 6 shows the comparison in performance when waiting time is taken
into consideration and when it is not. Waiting time does not seem to affect
Chunk, as the mean execution times with and without considering waiting time
are similar. Conversely, waiting time has a significant effect on Half and Single.
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Fig. 5: Speedup for different victim policies on varying number of nodes. (Global
matrix of 10000% 64-bit elements, organized as 200 tiles of 50? elements)
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Fig. 6: Execution time for different victim policies, with and without waiting time
taken into consideration. (Global matrix of 10000? 64-bit elements, organized as
2007 tiles of 502 elements)

In previous work, Perarnau et al. [17] found that Half gives three times the
performance of Chunk for the Unbalanced Tree Search (UTS) benchmark when
waiting time is not considered. UTS has the property that a child task is always
mapped to the same node as its parent task unless stolen by a thief. Due to this
mapping property, Half makes sense in UTS as no new task will be generated
on a starving node. At the same time, there can be an exponential increase
in tasks in a busy node. Also, UTS will not suffer from the same problems
demonstrated in Fig. 3, as no new tasks are generated in a starving node. We
were able to achieve similar results for UTS (Fig. 7) but the performance of Half
was not transferred Cholesky factorization (Fig. 6). We also found that Single
has comparable performance to Half when using UTS.

Experiments we conducted using sparse Cholesky factorization (Fig. 6) show
that when waiting time is not considered Half performs worse than Chunk. When
waiting time is taken into consideration, Half performs better than Chunk, but
not by a huge margin. These experiments suggest that when using workloads that
have child tasks with multiple parents located on different nodes, it is better to
consider waiting time in victim policies. The experiments also demonstrate that
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Fig. 7: Execution time for different victim policies when using UTS benchmark
(b=120, m=5, q= 0.200014, g=12 * 106).

if a victim policy gives good performance on one workload, it is not guaranteed
that it will deliver similar performance on another.

Granularity Granularity is the time taken to execute a single task. The gran-
ularity of different task types may be different but in sparse Cholesky factoriza-
tion, the granularity of all task types is proportional to the tile size. So we tested
the performance of different victim policies against different tile sizes. Table 1
show that work stealing is more effective with increasing granularity. Also, for
smaller granularity, Chunk outperforms Half. Additionally, for small granularity,
work stealing using Half actually degrades performance.

Steal Success Percentage Steal success percentage is the percentage of steal
requests that have yielded at least one task. Fig. 8 shows the steal success per-
centage for different victim policy. When imbalance is high, steal success is the
highest for Chunk. At the same time, Fig. 5 shows that the speedup is highest for
Single when imbalance is high. From both these experiments, we can conclude
that stealing more tasks does not guarantee better speedup, even when there is
a high imbalance.

5 Conclusion

In this paper, we showed that work stealing is an effective load balancing strategy
in task-based dataflow runtime, delivering a speedup of up to 35% and reducing
variability in execution time. We also demonstrate that stealing more tasks does
not guarantee better speedup, even when there is a high imbalance. When the
task is stolen is more important than how many tasks are stolen and counting
future tasks is critical in determining starvation in a thief policy. These exper-
iments suggest that when using workloads that have child tasks with multiple
parents located on different nodes, it is better to consider waiting time in victim
policies. As an extension of this work, we will be exploring work stealing between
accelerator devices in the same node.
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Table 1: Speedup for different victim policies for different tile sizes. (tiled matrix,
100002 tiles, four nodes)

6

Execution Time Speedup
Tile size | No-Steal Chunk Half Single | Chunk Half Single
10x10 230 214 244 221 1.077 0.94 1.03
20x20 237 235 246 228 1.006 0.96 1.03
30x30 255 246 253 238 1.03 1.008 1.07
40x40 400 370 388 370 1.08 1.032 1.08
50x50 562 501 503 448 1.12 1.11 1.25
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