
Resilient Optimistic Termination Detection for the
Async-Finish Model

Sara S. Hamouda1,2[0000−0001−7300−9565]? and Josh Milthorpe1[0000−0002−3588−9896]

1 Australian National University, Canberra, Australia
2 INRIA, Paris, France

sara.hamouda@inria.fr,josh.milthorpe@anu.edu.au

Abstract. Driven by increasing core count and decreasing mean-time-to-failure
in supercomputers, HPC runtime systems must improve support for dynamic
task-parallel execution and resilience to failures. The async-finish task model,
adapted for distributed systems as the asynchronous partitioned global address
space programming model, provides a simple way to decompose a computation
into nested task groups, each managed by a ‘finish’ that signals the termination
of all tasks within the group.
For distributed termination detection, maintaining a consistent view of task state
across multiple unreliable processes requires additional book-keeping when cre-
ating or completing tasks and finish-scopes. Runtime systems which perform this
book-keeping pessimistically, i.e. synchronously with task state changes, add a
high communication overhead compared to non-resilient protocols. In this paper,
we propose optimistic finish, the first message-optimal resilient termination detec-
tion protocol for the async-finish model. By avoiding the communication of cer-
tain task and finish events, this protocol allows uncertainty about the global struc-
ture of the computation which can be resolved correctly at failure time, thereby
reducing the overhead for failure-free execution.
Performance results using micro-benchmarks and the LULESH hydrodynamics
proxy application show significant reductions in resilience overhead with opti-
mistic finish compared to pessimistic finish. Our optimistic finish protocol is ap-
plicable to any task-based runtime system offering automatic termination detec-
tion for dynamic graphs of non-migratable tasks.

Keywords: Async-finish · Termination detection · Resilience

1 Introduction

Recent advances in high-performance computing (HPC) systems have greatly increased
parallelism, with both larger numbers of nodes, and larger core counts within each node.
With increased system size and complexity comes an increase in the expected rate of
failures. Programmers of HPC systems must therefore address the twin challenges of
efficiently exploiting available parallelism and ensuring resilience to component fail-
ures. As more industrial and scientific communities rely on HPC to drive innovation,
there is a need for productive programming models for scalable resilient applications.

? Research performed during PhD studies at the Australian National University

2 Sara S. Hamouda and Josh Milthorpe

Many productive HPC programming models support nested task parallelism via
composable task-parallel constructs, which simplify the expression of arbitrary task
graphs to efficiently exploit available hardware parallelism. Termination detection (TD)
– determining when all tasks in a subgraph are complete – is a key requirement for
dynamic task graphs. In an unreliable system, additional work is required for correct
termination detection in the presence of component failures. Task-based models for use
in HPC must therefore support resilience through efficient fault-tolerant TD protocols.

The async-finish task model is a productive task parallelism model adopted by
many asynchronous partitioned global address space (APGAS) languages. It represents
a computation as a global task graph composed of nested sub-graphs, each managed
by a finish construct. Finish embodies a TD protocol to track the termination of the
asynchronous tasks spawned directly or transitively within its scope.

The first resilient TD protocol for the async-finish model was designed by Cunning-
ham et al. [3] as part of the Resilient X10 project. Resilient X10 provides user-level fault
tolerance support by extending the async-finish model with failure awareness. Failure
awareness enables an application to be notified of process failures impacting the com-
putation’s task graph to adopt a suitable recovery procedure. Unsurprisingly, adding
failure awareness to the async-finish model entails a cost; it requires the runtime system
to perform additional book-keeping activities to correctly detect termination despite the
gaps created in the computation’s task graph.

Cunningham et al.’s TD protocol for Resilient X10 tracks all state transitions of
remote tasks in order to maintain a consistent view of the computation’s control flow.
While this ensures a simple failure recovery process, it adds more termination signals
than are strictly necessary during normal failure-free execution. Since it favors failure
recovery over normal execution, we describe this protocol as ‘pessimistic’.

In this paper, we review the pessimistic finish protocol, and demonstrate that the re-
quirement for a consistent view results in a high performance overhead for failure-free
execution. We propose the ‘optimistic finish’ protocol, an alternative message-optimal
protocol that relaxes the consistency requirement, resulting in faster failure-free execu-
tion with a moderate increase in recovery cost.

The remainder of the paper is organized as follows. Section 2 provides background
on nested task parallelism and the X10 programming languages, and Section 3 presents
related work. Section 4 proves the optimal number of messages required for correct
async-finish termination detection. Section 5 describes the failure model and the chal-
lenges of recovering async-finish task graphs. Section 6 presents an abstract framework
for implementing async-finish TD protocols. Based on this framework, we describe the
pessimistic protocol in Section 7 and the optimistic protocol in Section 8. Section 9 de-
scribes a scalable resilient finish store. Section 10 presents the performance evaluations
and Section 11 concludes.

2 Background

2.1 Nested Task Parallelism Models

Computations that entail nested termination scopes are generally classified as fully-
strict or terminally-strict. Blumofe and Leiserson [2] describe a fully-strict task graph

Resilient Optimistic Termination Detection for the Async-Finish Model 3

(a) fully-strict computation
(spawn-sync)

f

c d

e

a

sync

b

g h

(b) terminally-strict computation
(async-finish)

sync

g h

f

c d

e

b

finish
a

finish

Fig. 1: Nested parallelism models. Dotted boxes are termination scopes; circles are tasks.

as one that has fork edges from a task to its children and join edges from each child to
its direct parent. A task can only wait for other tasks it directly forked (see Figure 1-
a). In contrast, a terminally-strict task graph allows a join edge to connect a child to
any of its ancestor tasks, including its direct parent, which means a task can wait for
other tasks it directly or transitively created (see Figure 1-b). Cilk’s spawn-sync pro-
gramming model and X10’s async-finish programming model are the most prominent
representatives of fully-strict and terminally-strict computations, respectively. For dy-
namic irregular task trees, the async-finish model avoids unnecessary synchronization
by relaxing the requirement to have each task to wait for its direct successors.

When failures occur, nodes in the computation tree are lost, resulting in sub-trees
of the failed nodes breaking off the computation structure. Fault-tolerant termination
detection protocols aim to reattach those sub-trees to the remaining computation to
facilitate termination detection. Although in this paper we focus on the async-finish
model, the described resilient protocols are also applicable to the spawn-sync model.

2.2 The X10 Programming Model

We used the APGAS language X10 as a basis for our study of the termination detection
protocols of the async-finish model. X10 models a parallel computation as a global
address space partitioned among places. Each place is a multi-threaded process with
threads cooperating to execute tasks spawned locally or received from other places. A
task is spawned at a particular place and cannot migrate to other places.

An X10 program dynamically generates an arbitrary task graph by nesting async,
at, and finish constructs. The async construct spawns a new task at the current place.
To spawn an asynchronous task at a remote place p, at is used with async as fol-
lows: (at (p) async S;). The finish construct is used for synchronization; it defines
a scope of coherent tasks and waits for their termination. Each task belongs to one fin-
ish scope, and finish scopes can be nested. Exceptions thrown from any of the tasks
are collected at the finish, and are wrapped in a MultipleExceptions object after fin-
ish terminates. A place may hold references to objects hosted at remote places using
the x10.lang.GlobalRef type. To access a remote object using its global ref gr, a task
must shift to the object’s home as follows: (at(gr) gr().doSomething();).

4 Sara S. Hamouda and Josh Milthorpe

3 Related Work

Dijkstra and Scholten (DS) [4] proposed one of the earliest and best-studied TD pro-
tocols for the so-called ‘diffusing computation’ model. In this model, the computation
starts by activating a coordinator process that is responsible for signaling termination.
Other processes are initially idle and can only be activated by receiving a message from
an active process. An active process can become idle at any time. The DS protocol is
a message-optimal protocol such that for a computation that sends M basic messages,
DS adds exactly M control messages to detect termination. It requires each intermedi-
ate process to signal its termination only after its successor processes terminate. This
termination detection model is very similar to Cilk’s fully-strict spawn-sync model.
Fault-tolerant extensions of the DS algorithm are presented in [6, 7].

Lai and Wu [6] describe a resilient protocol that can tolerate the failure of almost
the entire system without adding any overhead for failure-free execution. The idea is
that each process (idle or active) detecting a failure must detach from its parent, adopt
the coordinator as its new parent, and share its local failure knowledge with its parent
and the coordinator. On detecting a failure, the coordinator expects all processes to send
termination signals directly to it. The protocol introduces a sequential bottleneck at the
coordinator process, which limits its applicability to large-scale HPC applications.

Lifflander et al. [7] took a practical approach for resilient TD of a fully-strict dif-
fusing computation. Based on the assumption that multi-node failures are rare in prac-
tice, and that the probability of a k-node failure decreases as k increases, they designed
three variants of the DS protocol that can tolerate most but not all failures. The IN-
DEP protocol tolerates the failure of a single process, or multiple unrelated processes.
It requires each parent to identify its successors and their successors. Therefore, each
process notifies its parent of its potential successor before activating it. Two protocols
were proposed to address related failures, however, they cannot tolerate the failure of
an interior (non-leaf) node and its parent.

To the best of our knowledge, the only prior work addressing resilient TD for the
terminally-strict async-finish model was done in the context of the X10 language. Cun-
ningham et al. [3] enhanced X10 to allow a program to detect the failure of a place
through a DeadPlaceException from the finish constructs that control tasks running at
that place. The TD protocol extends finish with an adoption mechanism that enables
it to detect orphan tasks of its dead children and to wait for their termination before
reporting a DPE to the application. This adoption mechanism ensures that failures will
not leave behind hidden tasks at surviving places that may silently corrupt the appli-
cation’s state after recovery. However, it requires additional book-keeping activities for
tracking the control flow of the computation, which results in high resilience overhead
for failure-free execution. Our work extends [3] to provide a low-overhead resilient
termination detection protocol for the async-finish model. Assuming failures are rare
events, we designed a message-optimal ‘optimistic’ TD protocol that aims to optimize
the failure-free execution performance of resilient applications.

Resilient distributed work-stealing runtime systems use fault tolerant protocols for
tracking task migration under failure [5, 9]. Our work focuses on the APGAS model, in
which tasks are explicitly assigned to places, hence they are not migratable.

Resilient Optimistic Termination Detection for the Async-Finish Model 5

Re
m

ot
e

Fo
rk

 S
ig

na
ls

b c

Finish

a

-b
-c

-a

+a

+b
+c

Re
m

ot
e

Jo
in

 S
ig

na
ls

ResilientFinish

PublishRelease

b c

Finish

a

-b

{-a, +b, +c}

-c Re
m

ot
e

Jo
in

 S
ig

na
ls

+a

Lo
ca

l F
or

k
Si

gn
al

s

+b
+c

a) Non-resilient Mode b) Resilient Mode
Resilient Store

Fig. 2: Message-optimal async-finish TD protocols.

4 Message-Optimal Async-Finish Termination Detection

In this section, we consider the optimal number of control messages required for correct
async-finish termination detection in both non-resilient and resilient implementations.

We assume a finish block which includes nested async statements that create dis-
tributed tasks, such that each task and its parent (task or finish) are located at different
places. Messages sent to fork these tasks at their intended locations are referred to as ba-
sic messages. For example, in the task graphs in Figure 2, three basic messages are sent
to fork tasks a, b, and c. The additional messages used by the system for the purpose of
termination detection are referred to as control messages (shown as dotted lines in the
figures). We consider the basic messages as the baseline for any termination detection
protocol, thus an optimal protocol will add the minimum number of control messages
as overhead. In resilient mode, we build on Cunningham et al.’s design [3] in which
the TD metadata of the finish constructs are maintained safely in a resilient store. A
finish and the resilient store exchange two signals: the PUBLISH signal is sent from the
finish to the store to create a corresponding ResilientFinish object, and the RELEASE
signal flows in the other direction when the finish scope terminates (see Figure 2-b).

As a finish scope evolves by existing tasks forking new tasks, finish needs to update
its knowledge of the total number of active tasks so that it can wait for their termination.
We refer to this number as the global count or gc. Finish forks the first task and sets gc
= 1. A task must notify finish when it forks a successor task to allow finish to increase
the number of active tasks (by incrementing gc). When a task terminates, it must notify
finish to allow it to decrease the number of active tasks (by decrementing gc). When the
last task terminates, gc reaches zero and finish is released. We use the terms FORK and
JOIN to refer to the control signals used to notify finish when a new task is forked and
when a running task terminates. Multiple signals from the same source may be packed
in one message for better performance.

Lemma 1. A correct non-resilient finish requires one TD control message per task.

Proof. Finish detects termination only after all forked tasks terminate. Thus sending
a JOIN signal when a task terminates is unavoidable for correct termination detection.
During execution, a parent task may fork N successor tasks, and therefore, it must
notify finish with N FORK signals for these tasks. Assuming that failures do not occur,

6 Sara S. Hamouda and Josh Milthorpe

each task must eventually terminate and send its own JOIN signal. A task can buffer the
FORK signals of its successor tasks locally and send them with its JOIN signal in the same
message. Thus, with only one message per task, finish will eventually receive a FORK
signal and a JOIN signal for each task, which guarantees correct termination detection.

Figure 2-a illustrates this method of non-resilient termination detection. When task
a forks tasks b and c, it delays sending their FORK signals (+b, +c) until it joins. At
this point, it packs its JOIN signal (-a) with the delayed FORK signals and sends one
message containing the three signals (-a, +b, +c). Note that delaying the fork signals
may result in tasks joining before their FORK signals are received by finish. A correct
implementation must delay termination until each FORK is matched by a JOIN and each
JOIN is matched by a FORK.

Lemma 2. A correct resilient finish requires two TD control messages per task.

Proof. In the presence of failures, tasks may fail at arbitrary times during execution.
For correct termination detection, finish must be aware of the existence of each forked
task. If a parent task fails in between forking a successor task and sending the FORK
signal of this task to finish, finish will not track the successor task since it is not aware
of its existence, and termination detection will be incorrect. Therefore, a parent task
must eagerly send the FORK signal of a successor task before forking the task, and may
not buffer the FORK signals locally. For correct termination detection, each task must
also send a JOIN signal when it terminates. As a result, correct termination detection
in the presence of failures requires two separate TD messages per task – a message for
the task’s FORK signal, and a message for the task’s JOIN signal. The absence of either
message makes termination detection incorrect.

Figure 2-b demonstrates this method of resilient termination detection, which en-
sures that a resilient finish is tracking every forked task. Assuming that a resilient finish
can detect the failure of any node in the system, it can cancel forked tasks located at
failed nodes to avoid waiting for them indefinitely. Note that in counting the messages,
we do not consider the messages that the resilient store may generate internally to guar-
antee reliable storage of resilient finish objects. While a centralized resilient store may
not introduce any additional communication, a replication-based store will introduce
communication to replicate the objects consistently.

Lemma 3. Optimistic resilient finish is a message-optimal TD protocol.

Proof. Our proposed optimistic finish protocol (Section 8) uses exactly two messages
per task to notify task forking and termination. Since both messages are necessary for
correct termination detection, the optimistic finish protocol is message-optimal.

5 Async-Finish Termination Detection Under Failure

In this section, we use the following sample program to illustrate the challenges of
async-finish TD under failure and the possible solutions. In Section 7 and Section 8,
we describe how these challenges are addressed by the pessimistic protocol and the
optimistic protocol, respectively.

Resilient Optimistic Termination Detection for the Async-Finish Model 7

Tasks[F1] = {a, b, [c]}
Tasks[F2] = {d}

Tasks[F1] = {a, [c], d}
Tasks[F2] = {d}

Tasks[F1] = {a, b}
Tasks[F2] = {d}

Tasks[F1] = {b} or {b, [c]} (?)
Tasks[F2] = {d}

(a) Normal execution (b) Loss of a live task and a
child finish

(c) Loss of the destination
of an in-transit task

(d) Loss of the source
of an in-transit task

F1

F2

a

d
b

c
1 2 3

4 5

F1

F2

a

d
b

c
1 2 3

4 5

adopted

F1

F2

a

d
b

c
1 2 3

4 5

F1

F2

a

d
b

c
1 2 3

4 5

Fig. 3: Task tracking under failure. The square brackets mark in-transit tasks.

1 finish /*F1*/ {
2 at (p2) async { /*a*/ at (p3) async { /*c*/ } }
3 at (p4) async { /*b*/ finish /*F2*/ at (p5) async { /*d*/ } }
4 }

Failure model: We focus on process (i.e. place) fail-stop failures. A failed place
permanently terminates, and its data and tasks are immediately lost. We assume that
each place will eventually detect the failure of any other place, and that a corrupted
message due to the failure of its source will be dropped either by the network module or
the deserialization module of the destination place. We assume non-byzantine behavior.

Challenge 1 - Loss of termination detection metadata: As a computation evolves,
finish objects are created at different places to maintain the TD metadata (e.g. the active
tasks of each finish). Losing one of these objects impairs the control flow and pre-
vents correct termination detection. To address this challenge, Cunningham et al. [3]
proposed using a resilient store that can save the data reliably and survive failures.
The design of the resilient store is orthogonal to the termination detection protocol,
thus different stores (i.e. centralized/distributed, disk-based/memory-based, native/out-
of-process) can be used. However, the survivability of the protocol implementation is
limited by the survivability of the store. For the above program, we assume that F1 and
F2 have corresponding resilient finish objects in the resilient store.

Challenge 2 - Adopting orphan tasks: When the finish home place fails, the finish
may leave behind active tasks that require tracking. We refer to these tasks as orphan
tasks. According to the semantics of the async-finish model, a parent finish can only
terminate after its nested (children) finishes terminate. A parent finish can maintain this
rule by adopting the orphan tasks of its dead children to wait for their termination.
Figure 3-b shows the adoption of task d by F1 after the home place of F2 failed.

Challenge 3 - Loss of in-transit and live tasks: Each task has a source place and
a destination (home) place, which are the same for locally generated tasks. The active
(non-terminated) tasks of the computation can be either running at their home place
(live tasks) or transiting from a source place towards their home place (in-transit tasks).

The failure of the destination place has the same impact on live and in-transit tasks.
For both categories, the tasks are lost and their parent finish must exclude them from its
global task count. For example, the failure of place 4 in Figure 3-b results in losing the
live task b, and the failure of place 3 in Figure 3-c results in losing the in-transit task c,
because its target place is no longer available.

8 Sara S. Hamouda and Josh Milthorpe

Listing 1.1: Finish TD API.
1 abstract class Finish(id:Id) {
2 val latch:Latch;
3 val parent:Finish;
4 def wait() { latch.wait(); }
5 def release() { latch.release(); }
6 }
7 abstract class LocalFinish(id:Id) {
8 val gr:GlobalRef[Finish];
9 def fork(src, dst):void;

10 def join(src, dst):void;
11 def begin(src, dst):bool;
12 }

Finish

LocalFinish
@src @dst

1 LF.fork(src, dst);
2 send (S);

3 receive (S);
4 if (LF.begin(src, dst)) {
5 execute(S);
6 LF.join(src, dst);
7 }

finish { … @src at (dst) async { S; } … }

LocalFinish
global

Ref globalRef

Fig. 4: Tracking remote task creation.

The failure of the source place has a different impact on live and in-transit tasks.
Live tasks proceed normally regardless of the failure, because they already started exe-
cution at their destinations. However, in-transit tasks are more difficult to handle (Fig-
ure 3-d). Based on Lemma 2, in resilient mode, a source place must notify its finish of a
potential remote task before sending the task to its destination. If the source place died
after the finish received the notification, the finish cannot determine whether the poten-
tial task was: 1) never transmitted, 2) fully transmitted and will eventually be received
by the destination, or 3) partially transmitted and will be dropped at the destination due
to message corruption. A unified rule that allows finish to tolerate this uncertainty is to
consider any in-transit task whose source place has died as a lost task and exclude it
from the global task count. The finish must also direct the destination place to drop the
task in case it is successfully received in the future.

To summarize, recovering the control flow requires the following: 1) adopting or-
phan tasks, 2) excluding live tasks whose destination place is dead, 3) excluding in-
transit tasks whose source place or destination place is dead, and 4) preventing a desti-
nation place from executing an in-transit task whose source place is dead. The optimistic
finish protocol achieves these goals using the optimal number of TD messages per task,
unlike the pessimistic protocol which uses one additional message per task.

6 Distributed Task Tracking

In this section, we describe an abstract framework that can be used to implement ter-
mination detection protocols, based on the X10 runtime implementation. The essence
of the framework is presented as pseudocode in Listing 1.1, and Figure 4. In Sec-
tions 6.3, 7, and 8, we will describe three termination detection protocols based on
this framework.

6.1 Finish and LocalFinish Objects

A termination detection protocol is defined by providing concrete implementations of
the abstract classes Finish and LocalFinish shown in Listing 1.1. For each finish
block, an instance of Finish with a globally unique id is created to maintain a global
view of the distributed task graph. When the task that created the finish reaches the

Resilient Optimistic Termination Detection for the Async-Finish Model 9

Listing 1.2: Non-resilient Finish
1 class NR_Finish(id) extends Finish {
2 gc:int=0; // global count
3 def terminate(live:int[places]) {
4 for (p in places) gc += live[p];
5 if (gc == 0) release();
6 }
7 }
8 class NR_LocalFinish(id) extends LocalFinish {
9 live:int[places]={0}; //signals buffer

10 def fork(src, dst) { live[dst]++; }
11 def begin(src, dst) { return true; }
12 def join(src, dst) { live[dst]--; @F[id].terminate(live); }
13 }

end of the block, it calls the function wait to block on the latch until all the tasks that
were created by the finish block have terminated. When all tasks (direct and transitive)
terminate, the runtime system calls the function release to release the blocked task.
The runtime system links each finish object to its parent in a tree structure.

Each visited place within a finish block will create an instance of type LocalFinish
to track task activities done locally. It holds a global reference to the global Finish
object to notify it when changes in the task graph occur so that the Finish has an up-
to-date view of the global control structure.

6.2 Task Events

LocalFinish defines three interfaces to track task events: fork, begin, and join. Fig-
ure 4 shows the invocation of the three task events when a source place src spawns a
task at a destination place dst. On forking a new task, the source place calls fork to
notify finish of a potential new task, then it sends the task to the destination place. On
receiving a task, the destination place calls begin to determine whether or not the task
is valid for execution. If the task is valid, the destination place executes it, then calls
join to notify task termination. If the task is invalid, the destination place drops it.

We describe the protocols in terms of the variables of the Finish and LocalFinish
objects, and the implementations of the three task events fork, begin, and join. In the
included pseudocode, we use the notation @F[id], @LF[id], and @RF[id] to refer to a
remote Finish object, LocalFinish object and ResilientFinish object, respectively.

6.3 Non-Resilient Finish Protocol

Listing 1.2 describes a message-optimal implementation of a non-resilient finish. The
finish object maintains a global count, gc, representing the number of active tasks. The
LocalFinish maintains a live array to buffer the FORK and JOIN signal of its task and
the FORK signals of successor tasks to other places. The begin event accepts all incoming
tasks, because this non-resilient protocol is not prepared for receiving invalid tasks due
to failures. The join event passes the signals buffer live to the finish object. Finish
updates gc according to the passed signals and releases itself when gc reaches zero.

10 Sara S. Hamouda and Josh Milthorpe

Resilient F1 Place 2 Place 3live[2]=1
live[4]=1
gc=2 FORK(2,3)
transit[2][3]=1
gc=3 OK Send c

VALIDATE(2,3)

OKtransit[2][3]=0
live[3]=1

JOIN(2,3)
live[3]=0
gc=2

Recv c

Exec c

sent/transOrLive[1][2]=1
sent/transOrLive[1][4]=1
gc=2

sent/transOrLive[2][3]=1
gc=3

transOrLive[2][3]=0
gc=2

recv[2]=0
deny[2]=false

recv[2]=1

(a) The pessimistic protocol (b) The optimistic protocol
Resilient F1 Place 2 Place 3

FORK(2,3)

OK Send c

JOIN(2,3)

Recv c

Exec c

Assert !deny[2]Assert !dead[2,3]

Fig. 5: The task tracking events as task c transitions from place 2 to place 3, based on Figure 3-a.

7 Resilient Pessimistic Finish

The pessimistic resilient finish protocol requires the resilient finish objects to track the
tasks and independently repair their state when a failure occurs. Independent repair
requires advance knowledge of the status of each active task (whether it is in-transit or
live) and the set of children of each finish for adoption purposes.

Classifying active tasks into in-transit and live is necessary for failure recovery, be-
cause the two types of tasks are treated differently with respect to the failure of their
source, as described in Section 5. Using only the FORK and the JOIN signals (see Sec-
tion 4), a resilient finish can track a task as it transitions between the not-existing, active,
and terminated states. However, these two signals are not sufficient to distinguish be-
tween in-transit or live tasks. The pessimistic protocol adds a third task signal that we
call VALIDATE to perform this classification. Although the classification is only needed
for recovery, the application pays the added communication cost even in failure-free
executions.

The resilient finish object uses three variables for task tracking: gc to count the ac-
tive tasks, live[] to count the live tasks at a certain place, and trans[][] to count the
in-transit tasks between any two places. On receiving a FORK signal for a task moving
from place s to place d, the resilient finish object increments the variable trans[s][d]
and the global count gc. When the destination place receives a task, it sends a VALIDATE
message to resilient finish to check if the task is valid for execution. If both the source
and the destination of the task are active, resilient finish declares the task as valid
and transforms it from the transit state to the live state. That is done by decrementing
trans[s][d] and incrementing live[d]. On receiving a JOIN signal for a task that lived
at place d, the resilient finish decrements the variables live[d] and gc (see Figure 5-a).

7.1 Adopting Orphan Tasks

Tracking the parental relation between finishes is key to identifying orphaned tasks.
The pessimistic finish protocol requires each new finish not only to publish itself in the
resilient store, but also to link itself to its parent. Thus, in addition to the PUBLISH and
the RELEASE signals (see Section 4), a pessimistic finish uses a third signal ADD_CHILD to

Resilient Optimistic Termination Detection for the Async-Finish Model 11

connect a new resilient finish to its parent. When a parent finish adopts a child finish, it
deactivates the resilient finish object of the child and adds the child’s task counts to its
own task counts. A deactivated finish forwards the received task signals to its adopter.
The FORWARD_TO_ADOPTER directive in Listing 1.3 refers to this forwarding procedure.

7.2 Excluding Lost Tasks

When place P fails, the live tasks at P and the in-transit tasks from P and to P are con-
sidered lost. The number of lost tasks is the summation of live[P], trans[*][P], and
trans[P][*]. After calculating the summation, the pessimistic finish object resets these
counters and deducts the summation from the global count gc (see the recover method
in Listing 1.3). If the source place of an in-transit task fails, the finish requests the
destination place to drop the task using the response of the VALIDATE signal.

8 Our Proposed Protocol: Resilient Optimistic Finish

The optimistic finish protocol aims to provide reliable execution of async-finish com-
putations using the minimum number of TD messages. It optimizes over the pessimistic
protocol by removing from the critical path of task execution any communication that
is needed only for failure recovery. In particular, it removes the VALIDATE signal which
classifies active tasks into in-transit and live, and removes the ADD_CHILD signal which
synchronously tracks the children of each finish. It compensates for the missing infor-
mation due to removing these signals by empowering the places with additional meta-
data that can complete the knowledge of the resilient store at failure recovery time.

A resilient optimistic finish object uses the following variables for task tracking:
gc to count the active tasks, transOrLive[][] to count the active tasks, which may be
in-transit or live, given their source and destination, and sent[][] to count the total
number of sent tasks between any two places, which includes active and terminated
tasks. Each visited place within a finish scope records the following variables in its
LocalFinish object: recv[] to count the number of received tasks from a certain place,
and deny[] to check whether it can accept in-transit tasks from a certain place. Initially,
tasks can be accepted from any place.

When a source place s forks a task to a destination place d, transOrLive[s][d],
sent[s][d] and the global count gc are incremented (see Listing 1.4-Line 32). When
the destination place receives the task, it locally determines whether or not the task is
valid for execution using its deny table (see Listing 1.4-Line 19). If the task is valid,
the place executes it and sends a JOIN signal when the task terminates. The JOIN sig-
nal carries both the source and the destination of the task and results in decrementing
transOrLive[s][d] and gc (see Figure 5-b). Note that sent[][] and recv[] are never
decremented. We will show in Section 8.2 how the sent[][] and the recv[] tables are
used for resolving the number of lost in-transit tasks due to the failure of their source.

8.1 Adopting Orphan Tasks

The optimistic protocol does not use the ADD_CHILD signal, but rather calculates the set
of children needing adoption at failure recovery time.

12 Sara S. Hamouda and Josh Milthorpe

Each resilient finish object records the id of its parent, which was given in the
PUBLISH signal that created the object. The protocol relies on the fact that a child finish at
place xwill be created by one of the living tasks at place x governed by the parent finish.
When a place P dies, each resilient finish object checks the value of transOrLive[*][P]
to determine whether it has any active tasks at that place. If there are no active tasks at
P, then there are no children needing adoption due to the failure of place P. Otherwise,
it consults the resilient store to retrieve the list of children whose home place is P,
and therefore require adoption. The parent finish records these children in a set called
ghosts. Termination is detected when gc reaches zero and the ghosts set is empty (see
the condition of tryRelease() in Listing 1.4). A valid resilient store implementation of
the optimistic finish protocol must implement the FIND_CHILDREN function. This func-
tion is reduced to a search in a local set of resilient finish objects in a centralized resilient
store, or a query to the backup of the dead place in a replication-based resilient store.

The reason why we refer to the adopted children as ‘ghosts’ in this protocol is
because we keep them active after their corresponding finish dies. The ghost finishes
continue to govern their own tasks as normal, unlike the pessimistic finish protocol
which deactivates the adopted children. When a ghost finish determines that all its tasks
have terminated, it sends a REMOVE_CHILD signal to its parent (Line 50 in Listing 1.4).
When the parent receives this signal, it removes the child finish from its ghosts set and
checks for the possibility of releasing its corresponding finish.

8.2 Excluding Lost Tasks

Like the pessimistic protocol, we aim to exclude all transiting tasks from and to a dead
place, and all live tasks at a dead place. However, because transiting and live tasks are
not distinguished in our protocol, more work is required for identifying lost tasks.

For a destination place P, transOrLive[s][P] is the number of the in-transit tasks
from s to P and the live tasks executing at P. If P failed, both categories of tasks are
lost and must be excluded from the global count. After determining the ghost children
(as described in Section 8.1), the resilient finish object can deduct transOrLive[*][P]
from the global count, and reset transOrLive[*][P] for each failed place P. Any ter-
mination messages received from the dead place P must be discarded, otherwise they
may incorrectly alter the global count. Handling the failure of both the source and the
destination reduces to handling the failure of the destination.

For a source place P, transOrLive[P][d] is the number of the in-transit tasks from P
to d and the live tasks sent by P and are executing at d. If P failed, only the in-transit tasks
are lost and must be excluded from the global count; the live tasks proceed normally. An
optimistic resilient finish can only identify the number of in-transit tasks through com-
munication with the destination place d. Place d records the total number of received
tasks from P in recv[P]. At the same time, the resilient finish object records the total
number of sent tasks from P to d in sent[P][d]. The difference between sent[P][d]
and recv[P] is the number of transiting tasks from P to d. The resilient finish object re-
lies on a new signal COUNT_TRANSIT to calculate this difference and to stop place d from
receiving future tasks from place P by setting deny[P] = true (see the COUNT_TRANSIT
method in Listing 1.4, and its call in Listing 1.4-Line 64).

Resilient Optimistic Termination Detection for the Async-Finish Model 13

8.3 Optimistic Finish TLA Specification

TLA (Temporal Logic of Actions) [10] is a specification language for documentation
and automatic verification of software systems. The system’s specification includes an
initial state, a set of actions that can update the system’s state, and a set of safety and
liveness properties that describe the correctness constraints of the system. The TLA
model checker tool, named TLC, tests all possible combinations of actions and reports
any detected violations of the system’s properties.

We developed a formal model for the optimistic finish protocol using TLA to verify
the protocols correctness. Using 22 TLA actions, the model can simulate all possible
n-level task graphs that can be created on a p-place system, where each node of the task
graph has at most c children. It can also simulate the occurrence of one or more place
failures as the task graph evolves. The model specification is available at [11].

The distributed TLC tool currently cannot validate liveness properties, such as ‘the
system must eventually terminate’, which we needed to guarantee in our protocol. Using
the centralized TLC tool, it was infeasible for us to simulate large graph structures
without getting out-of-memory errors due to the large number of actions in our model.
Therefore, we decided to use a small graph configuration that can simulate all scenarios
of our optimistic protocol. In order to verify the case when a parent finish adopts the
tasks of a dead child, we need at least a 3-level graph, such that the finish at the top
level can adopt the tasks at the third level that belong to a lost finish at the second level.
In our protocol, separate cases handle the failure of the source place of a task, and the
failure of the destination place of a task. With one place failure we can simulate either
case. The case when a task loses both its source and destination requires killing two
places, however, in our protocol handling the failure of both the source and destination
is equivalent to handling the failure of the destination alone. Therefore, one place failure
is sufficient to verify all rules of our protocol. Because we use the top finish to detect
the full termination of the graph, we do not kill the place of the top finish. Therefore,
we need two places or more in order to test the correctness of the failure scenarios.

Testing was performed using TLC version 1.5.6 on an 8-core Intel i7-3770 3.40GHz
system running Ubuntu 14.04 operating system. It took a total of 2 hours and 59 minutes
to verify the correctness of our protocol over a 3-level task tree with a branching factor
of 2 using 3 places, with one place failure at any point in the execution.

9 Finish Resilient Store Implementations

Cunningham et al. [3] described three resilient store implementations, of which only
two are suitable for HPC environments. One is a centralized store that holds all resilient
finish objects at place-zero, assuming that it will survive all failures. The centralized
nature of this store makes it a performance bottleneck for large numbers of concurrent
finish objects and tasks. The other store is a distributed store that replicates each finish
object at two places – the home place of the finish, which holds the master replica, and
the next place, which holds a backup replica. Unfortunately, this scalable implemen-
tation was later removed from the code base of Resilient X10 due to its complexity
and instability. As a result, users of Resilient X10 are currently limited to using the
non-scalable centralized place-zero finish store for HPC simulations.

14 Sara S. Hamouda and Josh Milthorpe

Listing 1.3: Pessimistic Finish.
1 abstract class P_ResilientStore {
2 def PUBLISH(id):void;
3 def ADD_CHILD(parentId, childId):void;
4 }
5 class P_Finish(id:Id) extends Finish {
6 def make(parent:Finish) {
7 @store.ADD_CHILD(parent.id, id);
8 @store.PUBLISH(id);
9 }

10 }
11 class P_LocalFinish(id:Id) extends

LocalFinish {
12 def fork(src, dst) {
13 @RF[id].FORK(src, dst);
14 }
15 def join(src, dst){
16 @RF[id].JOIN(src, dst);
17 }
18 def begin(src, dst) {
19 return @RF[id].VALIDATE(src, dst);
20 }
21 }
22 class P_ResilientFinish(id:Id) {
23 gc:int=0;
24 live:int[places];
25 trans:int[places][places];
26 children:Set[Id];
27 adopter:Id;
28 def FORK(src, dst){
29 FORWARD_TO_ADOPTER;
30 if (bothAlive(src, dst)) {
31 trans[src][dst]++; gc++;
32 }
33 }
34 def JOIN(src, dst) {
35 FORWARD_TO_ADOPTER;
36 if (!dst.isDead()) {
37 live[dst]--; gc--;
38 if (gc == 0) @F[id].release();
39 }
40 }
41 def VALIDATE(src, dst) {
42 FORWARD_TO_ADOPTER;
43 if (bothAlive(src, dst)) {
44 trans[src][dst]--;
45 live[dst]++;
46 return true;
47 }
48 else return false;
49 }
50 def addChild(cId) {
51 children.add(cId);
52 }
53 def recover(dead) {
54 // adopt orphaned tasks
55 for (c in children) {
56 if (c.home == dead) {
57 trans += @RF[c].trans;
58 live += @RF[c].live;
59 gc += @RF[c].gc;
60 @RF[c].adopter = id;
61 }
62 }
63 // exclude lost tasks
64 gc -= trans[dead][*] + trans[*][dead]

+ live[dead];
65 trans[dead][*] = 0;
66 trans[*][dead) = 0;
67 live[dead] = 0;
68 if (gc == 0) @F[id].release();
69 }
70 }

Listing 1.4: Optimistic Finish.
1 abstract class O_ResilientStore {
2 def PUBLISH(id, parentId):void;
3 def FIND_CHILDREN(id, place):Set[Id];
4 }
5 class O_Finish(id:Id) extends Finish {
6 def make(parent:Finish) {
7 @store.PUBLISH(id, parent.id);
8 }
9 }

10 class O_LocalFinish(id:Id) extends
LocalFinish {

11 deny:bool[places]; recv:int[places];
12 def fork(src, dst) {
13 @RF[id].FORK(src, dst);
14 }
15 def join(src, dst){
16 @RF[id].JOIN(src, dst);
17 }
18 def begin(src, dst) {
19 if (deny[src]) return false;
20 else { recv[src]++; return true; }
21 }
22 def COUNT_TRANSIT(nSent, dead) {
23 deny[dead] = true;
24 return nSent - recv[dead];
25 }
26 }
27 class O_ResilientFinish(id:Id) {
28 gc:int=0; parent:Id;
29 transOrLive:int[places][places];
30 sent:int[places][places];
31 ghosts:Set[Id]; isGhost:bool;
32 def FORK(src, dst){
33 if (bothAlive(src, dst)){
34 transOrLive[src][dst]++; gc++;
35 sent[src][dst]++;
36 }
37 }
38 def JOIN(src, dst){
39 if (!dst.isDead()){
40 transOrLive[src][dst]--; gc--;
41 tryRelease();
42 }
43 }
44 def removeChild(ghostId) {
45 ghosts.remove(ghostId); tryRelease();
46 }
47 def tryRelease() {
48 if (gc == 0 && ghosts.empty())
49 if (isGhost)
50 @RF[parent].removeChild(id);
51 else @F[id].release();
52 }
53 def recover(dead) {
54 if (transOrLive[*][dead] > 0) {
55 val c = @store.FIND_CHILDREN(id,

dead);
56 ghosts.addAll(c);
57 for (g in c) @RF[g].isGhost = true;
58 }
59 gc -= transOrLive[*][dead];
60 transOrLive[*][dead] = 0;
61 for (p in places) {
62 if (transOrLive[dead][p] > 0) {
63 val s = sent[dead][p];
64 val t = @LF[id].COUNT_TRANSIT(s,

dead);
65 transOrLive[dead][p] -= t;
66 gc -= t;
67 }
68 }
69 tryRelease();
70 }
71 }

Resilient Optimistic Termination Detection for the Async-Finish Model 15

9.1 Reviving the Distributed Finish Store

Because a centralized place-zero finish store can significantly limit the performance of
Resilient X10, we decided to reimplement a distributed finish store for Resilient X10
for both optimistic and pessimistic protocols. Using TLA’s model checker, we identified
a serious bug in the replication protocol described in [3] for synchronizing the master
and the backup replicas of a finish. The problem in their implementation is that the
master replica is in charge of forwarding task signals to the backup replica on behalf of
the tasks. If the master dies, a task handles this failure by sending its signal directly to
the backup. In cases when the master fails after forwarding the signal to the backup, the
backup receives the same signal twice – one time from the dead master and one time
from the task itself. This mistake corrupts the task counters at the backup and results in
incorrect termination detection.

Using TLA, we designed a replication protocol (available in [11]) that requires each
task to communicate directly with the master and the backup. The protocol ensures that
each signal will be processed only once by each replica in failure-free and failure sce-
narios. When one replica detects the failure of the other replica, it recreates the lost
replica on another place using its state. The protocol ensures that if both replicas are
lost before a recovery is performed, the active tasks will reliably detect this catastrophic
failure, which should lead the Resilient X10 runtime to terminate. Otherwise, the dis-
tributed store can successfully handle failures of multiple unrelated places. Because the
failure of place-zero is unrecoverable in the X10 runtime system, our distributed finish
implementations do not replicate the finish constructs of place zero.

10 Performance Evaluation

We conducted experiments on the Raijin supercomputer at NCI, the Australian Na-
tional Computing Infrastructure. Each compute node in Raijin has a dual 8-core In-
tel Xeon (Sandy Bridge 2.6 GHz) processors and uses an Infiniband FDR network.
We statically bound each place to a separate core. The X10 compiler and runtime
were built from source revision 36ca628 of the optimistic branch of our reposi-
tory https://github.com/shamouda/x10.git, which is based on release 2.6.1 of
the X10 language. The experiments use the Native (C++ backend) version of X10
compiled using gcc 4.4.7 and use MPI-ULFM [1] for inter-place communication. MPI-
ULFM is a fault tolerant MPI implementation that provides efficient fault tolerant point-
to-point and collective communication interfaces over Infiniband and other networks.
We built MPI-ULFM from revision e87f595 of the master branch of the repository
https://bitbucket.org/icldistcomp/ulfm2.git.

10.1 Microbenchmarks

Cunningham et al. [3] designed the BenchMicro program to measure the overhead intro-
duced by resilient finish in various distributed computational patterns, such as fan-out,
all-to-all (or fan-out fan-out), and tree fan-out. We modified BenchMicro to start all pat-
terns from the middle place, rather than from place-zero. This avoids giving an unfair

16 Sara S. Hamouda and Josh Milthorpe

Table 1: Slowdown factor versus non-resilient finish with 1024 places. Slowdown factor = (time
resilient / time non-resilient). The “Opt. %” columns show the percentage of performance im-
provement credited to the optimistic finish protocol.

Pattern Finish count Tasks/Finish P-p0 O-p0 Opt. % P-dist O-dist Opt. %

1 Fan out 1 1024 2.3 0.9 59% 9.2 7.9 14%
2 Fan out message back 1 2048 1.4 1.2 15% 22.3 7.2 68%
3 Fan out fan out 1 10242 51.4 23.9 53% 95.6 39.2 59%
4 Fan out fan out with nested finish 1025 1024 90.9 80.8 11% 4.1 3.8 7%
5 Binary tree fan out 512 2 8.6 8.5 2% 1.4 1.1 27%
6 Synchronous ring around 1024 1 1.8 1.7 1% 1.8 1.8 0%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

places

(a) fan-out

non-resilient
P-p0
O-p0

P-dist
O-dist

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

places

fan-out message back

non-resilient
P-p0
O-p0

P-dist
O-dist

 0

 20

 40

 60

 80

 100

 120

 140

256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

places

fan-out fan-out (terminally-strict)

non-resilient
P-p0
O-p0

P-dist
O-dist

 0

 10

 20

 30

 40

 50

 60

 70

256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

places

fan-out fan-out with nested finish (fully-strict)

non-resilient
P-p0
O-p0

P-dist
O-dist

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

places

binary tree fan-out with nested finish (fully-strict)

non-resilient
P-p0
O-p0

P-dist
O-dist

 0

 2

 4

 6

 8

 10

 12

256 512 1024

T
im

e
 (

s
e
c
o
n
d
s
)

places

synchronous ring around

non-resilient
P-p0
O-p0

P-dist
O-dist

Fig. 6: BenchMicro results.

Resilient Optimistic Termination Detection for the Async-Finish Model 17

advantage to the centralized implementations by allowing them to handle most of the
signals locally.

We measured the time to execute each pattern using 256, 512 and 1024 places, with
one place per core. Each configuration was executed 30 times. Figure 6 shows the me-
dian with error bars representing the range between the 25th percentile, and the 75th
percentile. P-p0, O-p0, P-dist, and O-dist refer to pessimistic-centralized, optimistic-
centralized, pessimistic-distributed and optimistic-distributed implementations, respec-
tively. Table 1 summarizes the performance results with 1024 places.

From the results, we observe: 1) our proposed optimistic protocol reduces the re-
silience overhead of the async-finish model for all patterns. 2) the improvement with
the optimistic protocol is greater as the number of remote tasks managed by a finish in-
creases. 3) the more concurrent and distributed the finish scopes are in the program, the
greater the improvement observed with the resilient distributed finish implementations.

10.2 LULESH

X10 provides a resilient implementation of the LULESH shock hydrodynamics proxy
application [8] based on rollback-recovery. It is an iterative SPMD application that exe-
cutes a series of stencil computations on an evenly-partitioned grid and exchanges ghost
regions between neighboring places at each step.

We evaluated LULESH with a problem size of 303 elements per place for 60 itera-
tions. In resilient modes, checkpointing is performed every 10 iterations. In the failure
scenarios, we start three spare places and kill a victim place every 20 iterations – ex-
actly at iterations 5, 35, and 55. Therefore, a total of 75 iterations are executed, because
each failure causes the application to re-execute 5 iterations. The victim places are N/4,
N/2, and 3N/4, where N is the number of places. Both failure and checkpoint rates are
chosen to be orders of magnitude higher than would be expected in a real HPC system,
to allow checkpoint and recovery costs to be accurately measured. Table 2 and Figure 7
show the weak scaling performance results using different TD implementations.

LULESH uses the fan-out finish pattern multiple times for creating the application’s
distributed data structures and for spawning a coarse-grain task at each place to compute
on the local domain. These remote tasks do not add a resilience overhead, because the
fan-out finishes start from place zero. The initialization kernel is highly communication-
intensive – each place interacts with all its 26 neighbors to obtain access to remote
buffers used for ghost cell exchange. This kernel is re-executed after each failure to
reinitialize the references to the ghost regions. The optimistic finish protocol is highly
effective in reducing the resilience overhead of this kernel and speeding up recovery.

Each LULESH step performs point-to-point communication between neighboring
places for exchanging ghost regions, as well as collective functions. However, the col-
lectives map directly to native MPI-ULFM calls, hence do not use finish. Ghost ex-
change is performed using finish blocks that manage a small number of tasks. With
1000 places, the measured resilience overhead of a single step is: 13% for P-p0, 8% for
O-p0, 10% for P-dist, and only 4% for O-dist.

The application applies in-memory checkpointing by saving a copy of its state lo-
cally and another copy at the next place. Each copy is saved within a finish block that
controls a single remote task; hence the advantage of the optimistic protocol is minimal.

18 Sara S. Hamouda and Josh Milthorpe

Table 2: Average execution time for different LULESH kernels (times in seconds, finish resilience
overhead shown in parentheses).

Places Mode Init. Step Ckpt Detect. Reinit.
Total time
60 steps

(0 ckpt+0 fail)

Total time
60 steps

(6 ckpt+0 fail)

Total time
75 steps

(6 ckpt+3 fail)

343

non-res. 0.97 0.073 5.33
P-p0 6.22 (539%) 0.091 (26%) 0.16 0.57 7.21 11.70 (119%) 12.64 37.35
O-p0 4.15 (326%) 0.092 (27%) 0.15 0.47 5.12 9.69 (82%) 10.58 28.75
P-dist 2.02 (107%) 0.085 (17%) 0.05 0.23 1.93 7.12 (33%) 7.44 15.20
O-dist 1.36 (39%) 0.082 (12%) 0.05 0.12 1.40 6.26 (17%) 6.58 12.36

1000

non-res. 1.72 0.085 6.82
P-p0 10.01 (482%) 0.096 (13%) 0.20 1.28 10.68 15.75 (131%) 16.92 54.25
O-p0 7.49 (335%) 0.092 (8%) 0.18 0.66 8.54 12.99 (90%) 14.09 43.07
P-dist 2.50 (45%) 0.094 (10%) 0.06 0.53 2.55 8.12 (19%) 8.46 19.07
O-dist 2.41 (40%) 0.089 (4%) 0.06 0.36 2.50 7.73 (13%) 8.08 18.01

Fig. 7: LULESH weak scaling performance (1 core per place; this application requires a perfect
cube number of places)

The reported failure detection time is the time between killing a place and the
time when the fan-out finish that controls the execution of the algorithm reports a
DeadPlaceException. This occurs only after all its tasks terminate with errors due to
the failure of the victim (global failure propagation is achieved by ULFM’s communi-
cator invalidation mechanism). Reducing the runtime’s tracking activities for termina-
tion detection accelerates task processing as well as failure detection using optimistic
finish.

Resilient Optimistic Termination Detection for the Async-Finish Model 19

The computational pattern of LULESH is widely represented in the HPC domain.
Overall, the optimistic finish protocol is successful in reducing the resilience overhead
of the application in failure-free and failure scenarios. The frequent use of concurrent
finish scopes demonstrates the scalability advantage of the distributed finish store.

11 Conclusion

We described optimistic finish, a resilient message-optimal termination detection pro-
tocol for the productive task model, async-finish. By reducing the signals required for
tracking tasks and finish scopes, our protocol significantly reduces the resilience over-
head of overly decomposed parallel computations and enables them to reliably recover
from failures.

Acknowledgements

We would like to thank David Grove and Olivier Tardieu of IBM T. J. Watson Research
Center and Peter Strazdins of the Australian National University for their valuable com-
ments on this work. The research used resources from the National Computational In-
frastructure and NECTAR cloud, which are supported by the Australian Government.

References

1. Bland, W., Bouteiller, A., Herault, T., Hursey, J., Bosilca, G., Dongarra, J.J.: An evaluation
of user-level failure mitigation support in MPI. In: EuroMPI’12. pp. 193–203 (2012)

2. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing.
Journal of the ACM 46(5), 720–748 (1999)

3. Cunningham, D., Grove, D., Herta, B., Iyengar, A., Kawachiya, K., Murata, H., Saraswat,
V., Takeuchi, M., Tardieu, O.: Resilient X10: Efficient failure-aware programming. In: ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP). pp.
67–80 (2014)

4. Dijkstra, E.W., Scholten, C.S.: Termination detection for diffusing computations. Informa-
tion Processing Letters 11(1), 1–4 (1980)

5. Kestor, G., Krishnamoorthy, S., Ma, W.: Localized fault recovery for nested fork-join pro-
grams. In: 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
pp. 397–408. IEEE (2017)

6. Lai, T.H., Wu, L.F.: An (n-1)-resilient algorithm for distributed termination detection. IEEE
Transactions on Parallel and Distributed Systems 6(1), 63–78 (1995)

7. Lifflander, J., Miller, P., Kale, L.: Adoption protocols for fanout-optimal fault-tolerant ter-
mination detection. In: ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP). ACM (2013)

8. Milthorpe, J., Grove, D., Herta, B., Tardieu, O.: Exploring the APGAS programming model
using the LULESH proxy application. Tech. Rep. RC25555, IBM Research (2015)

9. Stewart, R., Maier, P., Trinder, P.: Transparent fault tolerance for scalable functional compu-
tation. Journal of Functional Programming 26 (2016)

10. The TLA Home Page. http://lamport.azurewebsites.net/tla/tla.html
11. TLA+ specification of the optimistic finish protocol and the replication protocol. https:
//github.com/shamouda/x10-formal-spec

