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Abstract—The Global Matrix Library (GML) is a distributed
matrix library in the X10 language. GML is designed to sim-
plify the development of scalable linear algebra applications.
By hiding the communication and parallelism details, GML
programs are written in a sequential style that is easy to use
and understand by non expert programmers.

Resilience is becoming a major challenge for HPC appli-
cations as the number of components in a typical system
continues to increase. To address this challenge, we improved
GML’s adaptability to process failure and provided a mecha-
nism for automatic data recovery. As iterative algorithms are
commonly used in linear algebra applications, we also created a
checkpoint/restore framework for developing resilient iterative
applications using GML.

Using three example machine learning applications, we
demonstrate that this framework supports resilient application
development with minimal additional code compared to a
non-resilient implementation. Performance measurements in a
typical cluster environment show that the major cost of resilient
execution is due to resilient X10 itself, and that the additional
cost due to our framework is acceptable.

Keywords-X10; Resilience; Global Matrix Library; Check-
point/Restart; Iterative Algorithms
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I. INTRODUCTION

Specialized matrix libraries are commonly used for rapid
development of statistical and linear algebra applications.
Systems such as MATLAB and R provide scientists with
simple vector and matrix routines that enable them to easily
build linear algebra applications and to simulate mathemat-
ical models in their domains.

The huge increase in the size of datasets of interest
motivates the need for distributed matrix libraries that can
exploit large scale clusters. However, distributed process-
ing can be difficult for non-expert programmers to handle
correctly due to the explicit handling of matrix distribution,
data sharing, task coordination and load balancing. Ensuring
resilient execution of applications adds further complexity as
the size of computing clusters continues to increase.

Many researchers have used scalable fault tolerant data
flow systems such as Hadoop [1] to implement resilient data

intensive applications. Although the MapReduce model [2]
applied by Hadoop is simple to use for aggregate operations,
it is less suitable for implementing matrix operations [3],
as the need to cast the matrix algorithms as map and
reduce operations (such as in HaMa [4]) results in inefficient
parallel algorithms [5]. Hadoop is also not suitable for
implementing iterative algorithms [6], which are commonly
used in linear algebra applications. Mahout [7] is a Hadoop
based framework that provides high level building blocks
for developing machine learning algorithms, but it inherits
Hadoop’s performance deficiencies of handling iterative
algorithms [8]. Spark [9] and HaLoop [6] are data flow
systems that use in-memory data caching for more efficient
iterative processing, however, these systems do not expose
a matrix-based data model to the application, which makes
them harder to use than specialized matrix libraries.

In this paper, we describe a matrix library written in the
X10 language that addresses the main challenges associated
with distributed matrix computations: simplicity, perfor-
mance, resilience and support for iterative computation.

X10 is a parallel programming language that is designed
to bridge the gap between productivity and scalability. X10
supports resilience by detecting the failure of a portion of the
system and notifying the application through an exception;
this allows users to implement their own application level
fault tolerance techniques to guard against fail-stop process
failures [10]. X10 version 2.5.1 introduced support for
dynamic process creation (Elastic X10). With resilience and
elasticity, X10 programmers are able to implement appli-
cations that can adapt to the loss or addition of resources
during the runtime.

X10 Global Matrix Library (GML) is a distributed matrix
library that provides a rich set of matrix formats and
routines, which makes it an attractive foundation for scalable
linear algebra applications, as well as a potential compilation
target for high-level array languages [11]. By hiding the
details of communication and parallelism, GML programs
are written in a sequential style that is easy to use and
understand by non-expert programmers. Although GML in-
herits the performance and the efficient support for iterative
algorithms from the X10 language, early versions were not
resilient; failure of a single process caused the whole GML
application to fail.

In this paper, we describe enhancements to GML to en-
able the development of resilient linear algebra applications



with minimal impact on productivity. We improved GML’s
adaptability to the loss of resources by providing different
restoration mechanisms that handle mapping the data parti-
tions to a dynamically changing number of processes. As
iterative algorithms are commonly used in linear algebra
applications, a framework for developing resilient iterative
applications was also implemented.

Our specific contributions are:

• A framework for developing resilient distributed linear
algebra applications.

• Experimental evaluation of the performance overhead
of our framework using different restoration modes.

• Experimental evaluation of the performance overhead
of Resilient X10 bookkeeping activities.

II. THE X10 LANGUAGE

X10 is an Asynchronous Partitioned Global Address
Space (APGAS) language. It simplifies distributed memory
programming by exposing a single address space partitioned
into regions called places. A place in the X10 language is
an abstraction for an operating system process that contains
a collection of data and threads operating on these data.
The X10 type x10.lang.Place represents a place in the
APGAS model, and x10.lang.PlaceGroup represents a
collection of places.

Adding asynchrony to the PGAS model gives the pro-
grammer the control to dynamically create asynchronous
tasks. The statement async S executes S in a new asyn-
chronous task on the current place. S can also create other
child async tasks. For synchronization, the finish construct
is used to block the current task until all the nested tasks
enclosed within the finish scope terminate. To access remote
data or execute on a different place, the at construct is used.
at(p)S executes the statement S at place p.

A task on a specific place can hold a reference to a
(possibly) remote object in a value of type x10.lang.

GlobalRef. However, the remote object can not be accessed
directly; a running task must change to the place that holds
the remote object using the at statement, then apply the
operator ‘()’ on the GlobalRef to access the referenced
object. For example, the following code accesses a remote
object of type MyClass using a global reference:

1 val gr:GlobalRef[MyClass] = ...;
2 at(gr) { val localObj:MyClass = gr(); }

This has the advantage of making the cost of remote access
explicit to the programmer.

Similar to GlobalRef, values of type x10.lang.

PlaceLocalHandle (PLH) are used to hold a reference to a
family of objects, one per place in a PlaceGroup specified
in the constructor. As with GlobalRef, the at statement
and the ‘()’ operator must be used to access these remote
objects.

X10 can be compiled into C++ code (Native X10) or Java
Code (Managed X10). For the communication layer, the user
can currently select between sockets, MPI, or PAMI.

A. Resilient X10

Originally, a crash of a single place in X10 would cause
the whole application to abort or to wait indefinitely for
the completion of tasks on the crashed place. The failure
rate is expected to increase in future systems as the num-
ber of components in the system increases; this motivated
the development of a resilience extension for X10 [10].
Instead of waiting for the completion of tasks on a crashed
place, the finish construct has been modified with extra
bookkeeping activities to be able to detect the death of
places, the termination of the orphan tasks, and to throw
a DeadPlaceException. This gives the programmer the
flexibility of handling this exception by a method suitable
for the application.

The current version of X10 only supports resilient execu-
tion over the sockets communication layer. It is also based
on the assumption that Place Zero is immortal, which means
that a failure of Place Zero will cause a failure of the whole
application. This is not a problem in practice, because even
though the probability of some place failing increases with
the number of places, the probability of a specific place
failing (such as Place Zero) remains constant.

III. X10 GLOBAL MATRIX LIBRARY

The Global Matrix Library (GML) provides powerful
yet simple matrix and vector APIs that hide from the
programmer the internal parallelism and distribution of the
computation. Using GML interfaces, parallel and distributed
linear algebra applications are written in a simple sequential
style. GML is an object-oriented library; different implemen-
tations of matrices and vectors implement the same interface,
so that client code is insulated from the details of the
implementation. The choice of the particular implementation
class is relevant only when the matrix or vector is created.
We envisage, in future work, a layer above GML where
this decision can be made automatically (through annotations
supplied by the user, or through code analysis).

Listing 2 shows a GML implementation for the PageRank
algorithm which is described in the pseudocode in Listing 1.

A. Matrix and Vector Classes

Table I lists some single place and multi-place classes
available in GML. The classes in the “Duplicated” column
store duplicates of the same vector or matrix data at mul-
tiple places, while the classes in the “Distributed” column
partition a single data structure across multiple places.

The Vector class represents a single column of elements.
DupVector represents a vector that is duplicated at a num-
ber of places. DistVector represents a vector partitioned



into a number of segments, where each place holds one
segment.

GML provides a variety of matrix representations by
specializing the abstract x10.matrix.Matrix class. For
single-place matrices, DenseMatrix represents a matrix in
full dense storage format, and SparseCSC and SparseCSR

represent sparse matrices stored in compressed-sparse-row
and compressed-sparse-column formats, respectively.

For the multi-place matrices, DupDenseMatrix and
DupSparseMatrix provide the functionality to dupli-
cate a matrix in a number of places. The distributed
classes provide abstractions for distributed block matrices.
DistSparseMatrix and DistDenseMatrix partition the
matrix by assigning one block to each place. In contrast,
DistBlockMatrix assigns one or more blocks to each
place. For doing so, it uses the x10.matrix.distblock.

BlockSet class which is a container for a set of blocks.
Allowing places to hold a set of blocks instead of a
single block facilitates restoring the computation after a
place failure by remapping the same matrix blocks among
the remaining places without the need to repartition the
matrix (more details in Section IV). Fig. 1 provides a
graphical representation of the DistVector, DupVector

and DistBlockMatrix classes.
Many matrix algorithms can be formulated as block

algorithms, to exploit the parallelism available in multi-
core and many-core systems. GML internally uses block
algorithms to implement the matrix operations. The x10.

matrix.block.Grid class is used by the distributed matrix
classes to partition a matrix into blocks.

B. Creating GML Objects

All GML classes provide the factory method make() to
create GML objects using the user specified configuration
parameters. For example, the DistBlockMatrix.make()

method used in Listing 2 (Line 3) allows the user to specify:
the matrix dimensions (m,n), the data grid configuration (the
number of row blocks and column blocks), and the place
grid configuration (the number of row places and column
places), which is used to map blocks to places.

C. GML Resilience Limitations

1) No Tolerance for Place Failure: Previous versions
of GML did not tolerate the loss of any place during the

Table I: GML Vector and Matrix Classes

Single-Place
Multi-Place

Duplicated Distributed
Vector
Classes

Vector DupVector DistVector

Matrix
Classes

DenseMatrix
SparseCSC
SparseCSR

DupDenseMatrix
DupSparseMatrix

DistDenseMatrix
DistSparseMatrix
DistBlockMatrix

Listing 1: PageRank pseudocode
1 for (z in 1..k) {
2 P = αGP+ (1− α)EUTP
3 }

Listing 2: PageRank Implementation using GML
1 /* Input Data */
2 var m:Long, n:Long, rowBlocks:Long,

colBlocks:Long, rowPlaces:Long,
colPlaces:Long, alpha:Double;

3 val G:DistBlockMatrix = DistBlockMatrix.
make(m, n, rowBlocks, colBlocks,
rowPlaces, colPlaces);

4 val P:DupVector = DupVector.make(n);
5 val U:DistVector = DistVector.make(n,

...);
6 /*Temp Data*/
7 val GP:DistVector = DistVector.make(n,

...);
8
9 /* Data initialization code omitted */

10
11 /* PageRank Iterations */
12 for (1..k) {
13 GP.mult(G, P).scale(alpha);
14 val UtP1a = U.dot(P) * (1-alpha);
15 GP.copyTo(P.local()); // gather
16 P.local().cellAdd(UtP1a);
17 P.sync(); // broadcast
18 }

computation. Losing a place left the PLHs with dangling
references to the dead places. The factory methods used
a fixed place group containing all the original places to
create the distributed objects. Also, the collective operations
were designed to operate on all places regardless of their
status. Due to these limitations, GML applications could not
tolerate a place failure.

2) No Built-in Mechanism For Restoring GML objects:
There was no built-in mechanism to restore the lost portion
of a GML object that was held by a failed place. The
application had to be started from the beginning after the
occurrence of any failure. Coding for fault tolerance was
entirely the responsibility of the programmer, which reduced
productivity.

IV. RESILIENT GML

In this section, we describe our improvements to GML,
which enable the development of applications that can
tolerate failures of one or more places (other than Place
Zero) during execution.

A. Using Arbitrary Place Group

1) GML Dynamic Place Distribution: Using a fixed non-
configurable place group limited the adaptability of the GML
objects to the environment changes (loss or addition of
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Figure 1: Graphical Representation for the Distribution of the DupVector, DistVector and DistBlockMatrix

places). To overcome this problem, we allowed the use of
arbitrary place groups for the construction of the multi-place
classes. Instead of using all the available places, the user can
specify a subset of places for creating a GML object.

The object’s distribution can also be modified during
execution; the remake(newPlaces:PlaceGroup) method
was added to the GML objects for this purpose.

2) Dynamic Distribution and Load Balancing: For the
duplicated classes in Table I, changing the PlaceGroup

simply means duplicating the vector/matrix on a different
number of places. However, changing the PlaceGroup for
the distributed classes requires careful handling for load
balancing.

Classes that assign one block to each place, such
as DistDenseMatrix, DistSparseMatrix, and
DistVector, must recalculate the data grid to generate new
blocks equal in number to the size of the new PlaceGroup.
On the other hand, classes that assign more than one block
per place (i.e. DistBlockMatrix) do not necessarily need
to recalculate the data grid. If the data grid is kept the same
after distribution, only the block-to-place mapping needs to
be updated. However this can lead to load imbalance when
using a different number of places.

To ensure an even data distribution between places, GML
requires repartitioning the object based on the size of the
new place group. Fig. 1 shows an example for distributing a
DupVector, a DistVector and a DistBlockMatrix over
a smaller number of places. The difference in load balance
resulting from either keeping or changing the data grid of
a DistBlockMatrix is shown in Fig. 1-b and Fig. 1-c,
respectively.

Changing the data grid results in better load balancing
but it also alters the blocks’ configurations (the number and
the dimensions of the blocks), which complicates the restore
operation, as will be described in Section IV-B.

Listing 3: GML Objects Snapshot/Restore API
1 interface Snapshottable {
2 def makeSnapshot():Snapshot;
3 def restoreSnapshot(snapshot:Snapshot):

void;
4 }

B. Snapshot/Restore Mechanism for GML objects

When the remake(newPlaces:PlaceGroup) method
is called to redistribute a GML object, it destroys the
previously allocated memory for the object and reallocates
memory on a new PlaceGroup. In order to restore a GML
object’s data, we added the capability to save a snapshot
of the object into a resilient store, and then use the saved
snapshot to restore the object’s data. The snapshot/restore
capability is provided through the Snapshottable interface
shown in Listing 3.

1) Snapshot Capability: A Snapshottable GML object
implements the makeSnapshot() method which returns a
Snapshot object. The Snapshot object stores the GML
object’s state as key/value pairs, where key is the index of
the place in the PlaceGroup, and value is the portion of
the object’s data stored on that place. When the GML object
is restored to a reduced number of places, the identifiers of
the remaining places will remain unchanged, but the index
of some places will be shifted due to filtering out the dead
places.

The Snapshot object applies a double in-memory storage
mechanism for the key/value pairs; a copy of each key/value
pair is saved in the local place, and a backup copy is saved
in the next place. The cost of saving data to a Snapshot

object is uniform from any place; it equals to the cost of
saving the local copy plus the cost of saving the remote
copy. However, the cost of loading data is not uniform, as
it depends on whether the requested data exists on the local
memory of the loading place.



2) Restore Capability: The restore capability is added to
the GML objects by implementing the restoreSnapshot

(Snapshot) method from the Snapshottable interface.
Restoring a duplicated class (such as DupVector) is done

by concurrently loading a duplicate for each place from the
Snapshot object given the new index of the place as the
key.

Restoring a distributed class (such as DistVector) is
done by concurrently loading each place’s data partition
from the Snapshot object. The performance of restoring
a distributed class depends on whether the object is using
the same or different data grid after a failure. If the object’s
partitioning is unchanged, this means that the blocks on
the new distribution have the same configurations as the
blocks on the old distribution (before the failure). Each
place restores its portion of the object’s data by copying
whole blocks from the snapshot object to the GML object
(block-by-block restore). This is applicable when the object
is restored using the same number of places. It is also
applicable for the DistBlockMatrix when the data grid
remains the same (see Fig. 1-b).

Restoring a distributed object is more complex when the
object’s data grid is changed. In that case, the number and
the dimensions of the blocks will be different from the
block configuration at the snapshot time (see Fig. 1-c). A
single block on the new distribution can overlap with many
other blocks on the old distribution. Each place needs to
calculate these overlapping regions to restore its data portion
by copying sub blocks from the overlapping places. For the
sparse matrices, the non-zero elements for the overlapping
regions must be counted to determine the space required
for the new sparse block, which adds more overheads for
restoring a repartitioned sparse matrix.

V. THE RESILIENT ITERATIVE APPLICATION
FRAMEWORK

In this section, we describe a framework that simplifies
the development of resilient iterative algorithms. We also
describe three restoration modes provided by the framework
to give the user the flexibility to select how the application
should adapt to the loss of places.

The framework applies the Coordinated Checkpoint/
Restart technique. In this technique, all the participating
processes periodically pause their processing in order to cre-
ate a consistent checkpoint for the application. Should one
process fail, the application can be recovered by restarting
the application from the latest checkpoint. In coordinated
checkpointing, it is not necessary to save more than one
checkpoint for the application; after a new checkpoint is
successfully taken, the old one can be deleted.

For some applications, it might be difficult to specify
where in the program a checkpoint should be taken. How-
ever, for the iterative algorithms, a checkpoint is usually

taken either at the beginning or at the end of the iteration
body.

The checkpointing interval should be carefully cho-
sen to balance the trade-off between the checkpointing
overhead and the recovery overhead. Young’s formula
may be used to determine the checkpointing interval:√
2 ∗ Timecheckpoint ∗MTTF, where MTTF is the mean

time to failure [12].

A. Framework Description

The implementation of the framework is based on three
main modules: 1) the application resilient store, 2) the itera-
tive application programming model, and 3) the application
executor.

1) Application Resilient Store: In Section IV-B, we ex-
plained how the Snapshot class is used to store the state
of a single GML object. In order to create a coherent
checkpoint for a GML application, it is important to take a
snapshot for every object that contributes to the application’s
state. Creating a checkpoint for the application should be
done in an atomic manner; the application snapshot is
considered valid only if the snapshots of all the involved
GML objects are successfully created. To make this process
easier for the application developer, the framework provides
the AppResilientStore class shown in Listing 4, which
creates consistent application snapshots, restores the appli-
cation from the latest snapshot, and deletes the old unneeded
snapshot(s).

Listing 5 shows an example for using the
AppResilientStore to snapshot/restore the PageRank
program in Listing 2. Taking a snapshot for the application
is done in lines 3-7. First startNewSnapshot() is called,
followed by calling save() or saveReadOnly() for each
GML object contributing to the application’s state, followed
by calling the commit() method. The saveReadOnly()

method is used with the objects that do not change during
the computation. If there is an existing snapshot for a read-
only object, the saveReadOnly() method will reuse this
snapshot, otherwise, a snapshot will be created. Restoring
the application state using a different place group is done
in lines 9-14. The multi-place objects are first updated
to use the new place group (newPlaces) by calling the
remake() method (lines 10-13), then a single call to the
restore() method is used to restore all the saved GML
objects (G, U, and P) in parallel.

2) Iterative Application Programming Model: The GML
iterative application framework requires the application de-
veloper to follow a specific programming model for devel-
oping an iterative algorithm. By limiting the programming
model, it becomes easier to provide fault tolerance for the
application with a higher level of transparency from the
programmer. For example, limiting the programming model
to the simple MapReduce model allows Hadoop to provide
transparent fault tolerance for its applications.



Listing 4: Application Resilient Store API
1 class AppResilientStore {
2 /* Array of application snapshots */
3 val snapshots:Rail[AppSnapshot];
4
5 def startNewSnapshot();
6 def save(obj:Snapshottable);
7 def saveReadOnly(obj:Snapshottable);
8 def commit();
9 def cancelSnapshot();

10 def restore();
11
12 class AppSnapshot{
13 val map:HashMap[Snapshottable,

Snapshot];
14 }
15 }

Listing 5: Using AppResilientStore to snapshot/restore the
PageRank Program in Listing 2

1 val store:AppResilientStore;
2 // Take an application snapshot
3 store.startNewSnapshot();
4 store.saveReadOnly(G);
5 store.saveReadOnly(U);
6 store.save(P);
7 store.commit();
8 // Restore an application snapshot
9 val newPlaces:PlaceGroup;

10 G.remake(..., newPlaces);
11 U.remake(..., newPlaces);
12 P.remake(newPlaces);
13 GP.remake(..., newPlaces);
14 store.restore();

Our framework requires the application developer to im-
plement the following four methods:
isFinished():Boolean - this method should evaluate

the algorithm’s termination condition (for example by check-
ing the number of completed iterations or by checking a
convergence condition).
step():void - this method should contain the body

of the iterative algorithm which will be repeated until
isFinished() evaluates to true.
checkpoint(store:AppResilientStore):void -

this method should contain the steps required to save the
states of the GML objects into the AppResilientStore

object passed as a parameter (i.e. Lines 3-7 in Listing 5).
restore(newPlaces:PlaceGroup, store:

AppResilientStore, snapshotIter:Long):void

- this method should contain the steps required to rollback
the application to the state of the snapshot iteration (the
third parameter). The restore method should use the
provided place group (first parameter) and the application
resilient store (second parameter) to remake and restore the

Table II: Lines of code comparison between the non-resilient
and resilient versions of the benchmark programs

Non-resilient Resilient
Application Total Total Checkpoint Restore

LinReg 66 96 10 16
LogReg 166 222 11 20
PageRank 72 94 7 10

used GML objects (i.e. Lines 9-14 in Listing 5).
We applied this programming model to three GML

benchmarking applications. Table II shows a lines of code
(LOC) comparison between the non-resilient versions and
the resilient versions. For the resilient code, the table shows
the total LOC, the checkpoint method LOC, and the
restore method LOC. All applications had 3 lines of
code for the isFinished method. The remaining lines
of code that are not shown in the table are related to
defining application specific variables, data initialization,
and the iterative algorithm, which are almost unchanged
for the purpose of resilience. The numbers in Table II
show that the programming effort required to add resilience
support is minimal. Further simplification can be done in
the future by providing annotations to mark the snapshot
objects to eliminate the need for defining the checkpoint

and restore methods.
3) Iterative Application Resilient Executor: The resilient

executor module is the component that executes GML ap-
plications following our framework’s programming model:
it executes the step() method in a loop, it calls the
isFinished() method to check the termination condition
of the loop, it calls the checkpoint() method according to
the provided checkpoint interval, and it calls the restore()
method when a place failure is detected.

B. Restoration Modes

The resilient executor provides three modes for restoring
the application that define how the application should adapt
to the loss of places.

1) Shrink Mode: In this mode, the executor restores the
application using the remaining live places. If the application
is using a DistBlockMatrix object, restoring the matrix
will be done using the same block partitioning. It provides
faster block-by-block restore, but can lead to load imbalance.

2) Shrink-Rebalance Mode: In this mode, the executor
restores the application using the remaining live places. If
the application is using a DistBlockMatrix object, the
matrix will be repartitioned to provide even load balancing
for the remaining places.

3) Replace-Redundant Mode: In this mode, a failed place
will be replaced by a spare place. At the application start
time, the user can select to create a number of redundant
places to be used in case of failure. Although starting redun-
dant places reduces the utilization of the allocated system



resources, this approach has the advantage of allowing the
executor to restore the application using the same number
of places. As a result, there will be no need to rebalance
the load between places, because the load distribution will
remain the same after the failure. When the number of failed
places exceeds the number of redundant places, the executor
will have to apply the shrink mode or the shrink-rebalance
mode based on the user’s choice.

In the future, we plan to add a fourth mode (Replace-
Elastic) that utilizes the new elasticity feature of X10.
Using elastic X10, we can dynamically create new places to
replace the failed ones instead of creating redundant places
in advance.

VI. RELATED WORK

Many programming languages, systems and libraries can
be used to implement linear algebra algorithms with different
levels of simplicity, efficiency and resilience. In the follow-
ing, we review some of the options ranging from low level
languages, such as MPI, to high level matrix languages.

A. Message Passing Systems

MPI is the de facto standard for developing high perfor-
mance applications including linear algebra algorithms. With
the reliability issues of large scale clusters, lots of efforts
have been made towards fault-tolerant MPI. FT-MPI [13]
and OpenMPI-ULFM[14] are examples for MPI implemen-
tations that provide APIs to rebuild or shrink the MPI
communicator after a failure. FMI [15] is another example of
a message passing runtime that provides automatic recovery
for MPI communicators using spare processes. MPI’s low
level programming model is complex to use, especially for
large applications with complex algorithms. As a result,
research into higher level programming models (like APGAS
and MapReduce) is gaining more interest.

The Global Arrays (GA) library [16] applies the Global
Address Space model by extending MPI with shared array
abstractions. Fault tolerance support has been added to
GA through checkpoint/restart [17], matrix encoding tech-
niques [18], and redundant communication [19]. Like GA,
GML provides distributed data structures and methods to
manipulate them, however, unlike GA, GML is implemented
in a high level APGAS language. Providing a resilient
simple to use matrix library for X10 expands the language’s
applicability, and makes X10 a more convenient alternative
for MPI.

B. Data Flow Systems

The MapReduce data flow model [2] provides a high
level abstraction for distributed processing. The simplicity
of the programming model, in addition to the scalability and
the transparent fault tolerance support are the main reasons
behind the wide adoption of MapReduce based systems such
as Hadoop. In spite of the success achieved by MapReduce

systems in supporting aggregate computations, the MapRe-
duce model is not a natural fit for matrix computations [3]. In
addition, implementing iterative algorithms as repeated calls
to MapReduce jobs is inefficient because of the encountered
I/O overhead due to reloading the intermediate data from
reliable storage at each iteration [6].

Spark [9] is a data flow system that provides reliable and
efficient support for iterative algorithms by storing the in-
termediate data in memory. Spark’s fault tolerance approach
is based on recording the coarse-grained transformations
done on the data partitions to enable recomputing any lost
partition. Similar to Hadoop, the Spark programming model
is not matrix based, thus it is more suitable for aggregate
computations than for matrix based computations.

C. Matrix Based Languages and Libraries

R and MATLAB are matrix processing frameworks that
are widely used by researchers for prototyping small scale
matrix algorithms [8]. There are some attempts to improve
the parallelism and scalability of such frameworks. Presto
[3] overcomes the scalability problem of R by extending it
with a distributed array abstraction darray and with APIs
for partitioning and repartitioning the distributed arrays for
automatic rebalancing. Presto requires the programmer to be
aware of the distributed nature of the matrix algorithm and to
express the algorithm by iterating over the individual array
blocks. Although this approach provides high flexibility
for implementing complex distributed matrix algorithms, it
comes with the cost of reduced productivity.

MadLinq [5] is a distributed matrix library for the .NET
language. The parallel execution of the block matrix com-
putation is done through a data flow engine, which trans-
forms the computation into a task DAG (Directed Acyclic
Graph). Although generating a task DAG can improve the
performance and processor utilization by applying pipelined
based scheduling, it can also introduce extra overheads for
matrix computations with regular parallelism patterns.

VII. EXPERIMENTS

To evaluate the performance of our resilient linear algebra
application framework, we measured: 1) the overall perfor-
mance of three applications running in non-resilient mode,
2) the overhead due to the bookkeeping activities of resilient
X10, 3) the checkpoint overhead, and 4) the restore overhead
for a single failure using the different restoration modes.

All timing experiments were conducted on a SoftLayer
cluster of 11 nodes hosted at IBM Almaden Research Center.
Each node has a single four-core 2.6GHz Intel Xeon E5-
2650 CPU with 8GB of memory; four Native X10 places
were run per node with a single worker thread per place
(X10_NTHREADS=1). The X10 compiler and runtime were
built from source version 2.5.2, and OpenBLAS version
0.2.13 was used for BLAS operations, also with a single
thread per place (OPENBLAS_NUM_THREADS=1). Our full



source code is freely available at http://x10-lang.org as part
of GML version 2.5.2.

A. Resilient X10 Overhead

To measure the overhead due to resilient X10, we ran
three GML benchmark codes – Linear Regression, Logistic
Regression and PageRank – under both non-resilient and
resilient X10. All are iterative codes; we performed 30 test
runs of 30 iterations each, and we report the mean, min and
max times across all runs.

The Linear Regression (LinReg) benchmark trains a linear
regression model against a set of labeled training examples;
in these experiments the training examples are stored as
a dense DistBlockMatrix. We trained a model of 500
features with a training set size of 50,000 examples per place
(weak scaling) on 2 to 44 places. Fig. 2 shows the time
per iteration for LinReg with non-resilient X10 compared to
resilient X10.

With standard non-resilient X10, the time per iteration
increases from 60ms on two places to 180ms on 44 places.
With resilient X10, time per iteration increases more rapidly
with number of places from 60ms to 400ms, an overhead
of up to 120%. The increasing cost of resilient X10 with
number of places is due to communication with place 0 for
activity bookkeeping, which has previously been identified
as a scalability bottleneck for place-zero-based resilient
finish [10].

The Logistic Regression (LogReg) benchmark trains a
binary classification model against a set of labeled training
examples stored as a dense DistBlockMatrix. Fig. 3
shows the time per iteration for LogReg with non-resilient
X10 compared to resilient X10.

With standard non-resilient X10, the time per iteration
increases from 110ms on two places to 295ms on 44 places.
The overhead of resilient X10 is relatively less with LogReg
than with LinReg: time per iteration increases from 110ms
to 595ms, an overhead of up to 100%.

The PageRank benchmark computes a measure of central-
ity for each node in a linked network, the structure of which
is represented in GML as a sparse DistBlockMatrix. We
performed 30 iterations of the PageRank algorithm for a
network of 2M edges per place (weak scaling) on 2 to 44
places. Fig. 4 shows the time per iteration for PageRank
with non-resilient X10 compared to resilient X10.

With standard non-resilient X10, the time per iteration
increases from 38ms on two places to 360ms on 44 places.
As there are fewer finish constructs used in PageRank
than in LinReg or LogReg, the overhead of resilient X10 is
minimal: time per iteration increases from 38ms to 370ms,
an overhead of less than 5%.

B. Checkpointing Overhead

We next examine the cost of performing checkpoints using
the resilient application framework. We ran the resilient
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Figure 2: Linear Regression: resilient X10 overhead
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Figure 3: Logistic Regression: resilient X10 overhead

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  4  8  12  16  20  24  28  32  36  40  44

ti
m

e
 p

e
r 

it
e
ra

ti
o
n
 (

m
s
)

places

resilient finish
non-resilient finish

Figure 4: PageRank: resilient X10 overhead



GML applications taking a checkpoint once every ten itera-
tions (three checkpoints per run). Table III shows the mean
time per checkpoint across 30 runs for the same problem
sizes used in the weak scaling experiments described above.

Table III: Time per checkpoint for resilient GML apps

Mean checkpoint time (ms)
places LinReg LogReg PageRank

2 1284 1288 241
4 1819 1819 332
8 1917 1945 358

12 2292 2354 451
16 2289 2361 462
20 2293 2368 469
24 2336 2350 478
28 2356 2385 480
32 2377 2415 500
36 2358 2401 516
40 2474 2510 522
44 2464 2534 534

At 44 places, checkpoint times for both LinReg and
LogReg are around 2.5 s, the time required to compute
around 6 and 4 iterations, respectively. The checkpoint time
for PageRank on 44 places is 534ms, the time required to
compute around 1.5 iterations. For all three applications,
time per checkpoint increases by less than 20% from 12
to 44 places, which suggests that the distributed checkpoint
algorithm is scalable. All of the three applications use a read-
only matrix as input. Using the saveReadOnly() with such
objects reduces the overall checkpointing overhead as their
snapshot will be created only once (in the first checkpoint).

C. Restore Overhead

We now consider the increase in runtime due to check-
pointing, restoration and (optionally) rebalancing when run-
ning in each of the three different restoration modes –
shrink, shrink–rebalance, and replace-redundant – described
in §V-B.

Fig. 5 shows the total runtime for 30 iterations of LinReg,
where checkpoints are taken every 10 iterations and a single
place failure occurs at iteration 15. The total runtime in-
cludes the overhead of resilient X10, checkpointing, restora-
tion and (for the shrink-rebalance mode only) rebalancing.
The total time for non-resilient execution without failure
is also shown as a baseline. Fig. 6 and Fig. 7 show the
corresponding timings for LogReg and PageRank.

Table IV shows the percentage of the total time consumed
by the checkpoint and the restore operations on 44 places for
the experiments in Fig. 5, 6 and 7. The replace-redundant
and the shrink modes produce lower overhead on the overall
execution time compared to the shrink-rebalance mode. The
shrink-rebalance mode has the highest overhead due to

vector/matrix repartitioning and having to copy multiple sub-
blocks to restore a single block.

Table IV: Percentage of total time consumed by checkpoint
(C%) and restore (R%) operations on 44 places

Shrink
Shrink-

Rebalance
Replace-

Redundant
Application C% R% C% R% C% R%

LinReg 32 18 25 22 36 7
LogReg 26 15 19 22 27 16
PageRank 10 7 10 10 11 4

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented a resilience extension to
X10 Global Matrix Library. Resilient GML objects can be
mapped to a dynamically changing number of processes, and
can be saved and restored using the same number or fewer
processes. Using X10’s resilient runtime and the snapshot/re-
store capability of GML objects, resilience support can be
added to GML programs with minimal programming effort.

Although the paper is about a library in the X10 language,
our approach is also applicable to other languages. The
resilient application framework is generic enough to be
easily implemented in other languages or reused by other
X10 libraries such as ScaleGraph [20].

In the future, we plan to use Resilient GML in more
resilient applications, improve the performance and compare
it with other frameworks. We also plan to add other fault
tolerance techniques, and to use Elastic X10 to achieve fast
restoration without sacrificing process utilization.
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