
Supporting Array Programming in X10

David Grove
IBM Research

groved@us.ibm.com

Josh Milthorpe
Australian National University
josh.milthorpe@anu.edu.au

Olivier Tardieu
IBM Research

tardieu@us.ibm.com

Abstract
Effective support for array-based programming has long been one
of the central design concerns of the X10 programming language.
After significant research and exploration, X10 has adopted an ap-
proach based on providing arrays via user definable and extensible
class libraries. This paper surveys the range of array abstractions
available to the programmer in X10 2.4 and describes the key lan-
guage features and language implementation techniques necessary
to make efficient and productive implementations of these abstrac-
tions possible.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: [Object-oriented languages]; D.3.2 [Language Classifi-
cations]: [Concurrent, distributed, and parallel languages]; E.1.3
[Data Structures]: Arrays

Keywords X10, arrays, language design, frameworks

1. Introduction
From the very beginning of the X10 project in 2004, array program-
ming has been a central concern. An early X10 language paper [5]
describes five major design decisions that led to X10, one of which
was to

Include a rich array sub-language that supports dense and
sparse distributed multi-dimensional arrays.

This decision was motivated by the desire to productively support
high performance computing domains that typically include signif-
icant amounts of array processing.

In the ensuing decade, a variety of approaches to supporting
array-based programming have been explored within X10. Initially,
the project focused on defining a rich array sub-language in which a
single compiler-supported array abstraction would support the en-
tire range of possible usage scenarios. Although expressive, nota-
tionally concise, and flexible, achieving acceptable levels of perfor-
mance for a single unified array sub-language was an elusive goal.
In particular, making “one size fits all” implementation choices
tended to yield array implementations that were simultaneously
poorly performing for very common simple usage scenarios and
not quite flexible enough to support the most complex scenarios.
As a result of this experience, the project focus gradually shifted

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ARRAY ’14, June 12-13 2014, Edinburgh, United Kingdom.
Copyright c� 2014 ACM 978-1-4503-2937-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2627373.2627380

to identifying the core language mechanisms and implementation
support necessary to allow an extensible collection of fit-to-purpose
array abstractions to be defined entirely at the X10 language level
as class libraries.

In this paper we will describe the current state of array-based
programming in X10 and what we believe are the fundamental lan-
guage and implementation building blocks needed to make a class
library based approach to array programming effective. The core
of the paper is a tour through the spectrum of array abstractions
available to be used with X10 2.4. All of the frameworks and li-
braries described in this paper are available as either part of the
X10 core class library or as additional open source modules avail-
able from http://x10-lang.org. We encourage the interested
reader to download the system and explore these ideas further via
the code!

We begin by briefly introducing the X10 programming lan-
guage and enumerating the language features and implementation
capabilities that we have found essential to our approach. In Sec-
tion 3 we describe the three array abstractions included in the
X10 2.4 core class libraries: x10.lang.Rail, x10.array, and x10

.regionarray, and motivate why we believe all three are neces-
sary. To illustrate the flexibility of the class library approach, Sec-
tion 4 describes the X10 Global Matrix Library, an implementation
of dense and sparse distributed matrices that provides a high-level
sequential API to parallel distributed matrix operations. Additional
scenarios of application-specific array abstractions are detailed in
Section 5. Finally Section 6 discusses related work and Section 7
describes some possible avenues of future work.

2. X10 Language Features
2.1 X10 Overview
The X10 programming language [5, 15] has been developed as
a simple, clean, but powerful and practical programming model
for scale out computation. Its underlying programming model, the
APGAS (Asynchronous Partitioned Global Address Space) pro-
gramming model [13], is organized around the two notions of
places and asynchrony. A place is an abstraction of shared, mu-
table data and worker threads operating on the data, typically real-
ized as an operating system process. A single APGAS computation
may consist of hundreds or potentially tens of thousands of places.
Asynchrony is provided through a single block-structured control
construct, async S. If S is a statement, then async S is a statement
that executes S in a separate thread of control (activity or task).
Dually, finish S executes S, and waits for all tasks spawned (recur-
sively) during the execution of S to terminate, before continuing.
Memory locations in one place can contain references (global refs)
to locations at other places. To use a global ref, the at (p) S state-
ment must be used. It permits the current task to change its place
of execution to p, execute S at p and return, leaving behind tasks
that may have been spawned during the execution of S. The termi-
nation of these tasks is detected by the finish within which the at

38



statement is executing. The values of variables used in S but defined
outside S are serialized, transmitted to p, and de-serialized to recon-
struct a binding environment in which S is executed. Constructs are
provided for unconditional (atomic S) and conditional (when (c) S)
atomic execution.

The sequential core language of X10 is a strongly-typed,
garbage-collected, class-based, object-oriented programming lan-
guage with single-class multiple-interface inheritance. To support
the construction of large software systems and reusable frame-
works, it includes a generic type system, support for closure lit-
erals and function types, user-definable operators, Java-style non-
resumptive exceptions, and advanced type system features such as
constraints.

X10 is implemented with two backends – on the managed
backend, X10 compiles into Java and runs on (a cluster of) JVMs,
on the native backend; X10 compiles into C++ and generates a
native binary for execution on scale-out systems. As discussed in
later sections of the paper, the desire to make code efficient on both
backends has influenced the design of some array frameworks in
X10, most notably Rail and the Global Matrix Library.

More information on X10 can be found online at http:
//x10-lang.org including the language specification [14], pro-
grammer’s guide [16], and a collection of tutorials and sample
programs.

2.2 Useful Language Features
Constructing any class library in X10 will naturally utilize core
object-oriented language features such as classes, interfaces, inher-
itance and packages to control member visibility. Container types
such as arrays will also utilize X10’s generic type system. Finally,
function types enable the succinct definition and use of higher order
operations such as element iteration, map, and reduce.

We have made extensive use of two additional language features
when building array libraries in X10: user-definable operators and
constrained types.

X10’s strong support for user-definable operators enables library-
based array classes to feel as if they were intrinsic to the language.
For example, in the code fragment a(i,j)= b(i,j,k) the operator
() is being used to read the element from b and the operator ()=

is being used to store the value in a. The implementation of these
operators is fully user-provided by writing X10 code in the form of
operator definitions in the classes of a and b respectively.

Array libraries in X10 make extensive use of X10’s constrained
type system to statically enforce API usage invariants and to en-
code sophisticated implementation invariants. The most complex
usages are in the x10.regionarray package (see 3.4), but all of our
array libraries use constrained types to enforce that the number of
dimensions used in indexing operations (() and ()=) matches the
rank (dimensionality) of the target array. An essential aspect of the
usability of the constrained type system is compiler support for type
inference of local variables and method return types and optional
generation of dynamic checking code for constraints that are not
statically satisfied.

2.3 Useful Implementation Capabilities
We have found three non-standard implementation capabilities of
the X10 toolchain quite useful in building high performance array
libraries: @NativeRep classes, annotations for indicating hot/cold
paths, and constant propagation of reads from property fields based
on static type information.

The @NativeRep mechanism of the X10 toolchain makes it pos-
sible to define new intrinsic types without modifying the X10 com-
piler. In brief, a @NativeRep class consists of two parts: an X10
class that specifies the API of the new intrinsic type in the form of
a collection of native methods and an implementation class writ-

ten in Java (managed X10) or C++ (native X10) that provides the
actual operations. The X10 compiler provides an annotation frame-
work that allows these pieces to be tied together, thus allowing the
intrinsic types to be fully defined purely in source code (no com-
piler modification necessary).

To maximize performance, the array library implementer needs
to be able to inform the compiler of hot/cold/exceptional path
information for key operations. In X10, this is achieved through
the annotation mechanism. In particular, the Inline and NoInline

method annotations can be used to force the inlining of hot paths
and maintain the outlining of cold paths. The NoReturn annotation
indicates that a method will unconditionally throw an exception. By
combining NoInline and NoReturn a cold path method that raises
an ArrayIndexOutOfBounds exception can be properly recognized
by the X10 compiler and this information passed along to the C++
compiler to enable it to make optimal code placement and register
allocation decisions.

Finally, X10’s constrained types provide a way to use static
type information to drive compile-time code specialization. The
static type of an expression may contain constraints restricting the
possible values of some of the fields of the type. One idiomatic
way this is used in the x10.regionarray library is to conditionalize
code paths by reads of these fields. If the code is then inlined into a
calling context where the constraints on the type of the containing
object imply that the field is a compile-time constant, then the
field read is replaced by a constant value and standard constant
propagation and folding applied to simplify the code (for example
by removing a branch of an if/then/else).

3. Core Arrays
This section describes the three base array abstractions that are in-
cluded in the X10 standard library and thus available to all X10
2.4 programs. As much as possible, all three of these abstractions
provide a similar look and feel by following a set of API conven-
tions. After describing these commonalities, we will discuss each
abstraction in turn covering its design goals and key aspects of its
implementation.

3.1 Common APIs
All the core array abstractions provide element indexing operations
via operators () and ()=. The multi-dimensional arrays all define
a property rank that represents the dimensionality of the array
instance and the overloaded () and ()= operators have method
guards (type constraints) that ensure that indexing operations are
always applied with arguments that are consistent with the target
array’s dimensionality.

To enable programmers to conveniently exploit large memory
systems, the size of an array is a long (64-bit integer) and all
array indexing operations use 64-bit quantities as well. This is
especially important for distributed arrays on clustered systems,
where the array’s data, and thus the global index space, may be
spread across thousands of compute nodes. Without 64-bit array
sizes and indices, it is hard for a distributed array to effectively
exploit the available aggregate cluster memory.

The various array implementations all provide high-level bulk
operations such as map and reduce with implicitly parallel seman-
tics. These operations take a function instance that represents the
operation to be performed and applies it exactly once to each ele-
ment in an unspecified order (thus allowing the implementations to
be internally dynamically parallelized).

Finally, arrays all provide iterations over both their values and
their index spaces, enabling succinct (and efficient) loop compre-
hensions to be used for many common idioms.

39



3.2 x10.lang.Rail: An Intrinsic Local Array
Design Goals The objective of the Rail class is to provide a
simple, high-performance implementation of indexed storage that
can be used as the foundation for building more sophisticated
arrays. Rail should have minimal metadata space overhead and
Rail indexing operations must result in optimal generated machine
code sequences. To support memory safety, it must be possible to
optionally1 dynamically validate that all Rail accesses use valid
indices.

To satisfy these goals, we decided that Rail should provide a
one-dimensional, zero-based, densely-indexed array analogous to
the built-in arrays in Java. The Rail class is generic in its element
type; relying on X10’s instantiation based semantics for generics to
avoid unnecessary boxing of data elements.

Implementation The Rail classes uses the @NativeRep mecha-
nism described in Section 2.3 to allow handcrafted implementa-
tions to be provided for Native and Managed X10. The X10 lan-
guage also supports a dedicated syntax for Rail literals: [1,2,3] is
a Rail literal of size 3 containing the numbers 1, 2 and 3.

For Native X10, Rail is implemented as a C++ generic class,
using the standard idiom of a struct whose last member is a size 1
array to allow a single heap allocation to include both the metadata
(C++ virtual function pointer and array size) and the data (C++
generic array of elements). As a result, the space overhead for
metadata is held to 2 machine words and no extra indirections
are needed. Indexing operations are mapped directly to C++ level
indexing operations on the backing C++ array. The resulting C++
code is easily understood by the platform C++ compilers and all the
standard loop optimizations such as induction variable elimination
and vectorization can be applied.

For Managed X10, Rail is implemented as a Java class that
wraps a backing Java array. To minimize boxing overheads, if the
element type of the Rail matches one of Java’s built-in primitive
types (e.g. double) then a primitive array (e.g. double[]) is used
as the backing Java array. This backing array is stored in a field
of nominal static type Object and therefore must be downcast on
every access. To mitigate the dynamic overhead of this design,
especially in loops, the X10 compiler includes an optimization pass
that caches the backing Java array in a local variable of the more
specific type at the outermost scope in which it was accessed. This
optimization greatly reduces the dynamic number of downcasts for
many programs, but some room for improvement remains in our
implementation. For impedance matching between Java’s int (32-
bit) sized arrays and X10’s 64-bit array size, we check the requested
size in Managed X10’s Rail constructor and raise an exception if
the size is not legal in Java.

3.3 x10.array: Basic Arrays
Design Goals The classes of the x10.array package are intended
to provide a high-performance implementation of a very important
common case of array usage in numeric codes: densely indexed,
rectangular, multi-dimensional arrays. The primary performance
metric for typical numerical kernels is dynamic machine instruc-
tions executed per element access; a successful design will be com-
petitive with the best generated code for equivalent Fortran arrays.
Minimizing metadata space overheads, cold-path code space and
optimizing element locality are important secondary performance
metrics.

The package provides both local and distributed arrays and sup-
porting concepts such as iteration spaces and utilities for blocking
iteration spaces. To improve programmer productivity, elements of
distributed arrays are accessed using a global index space, which

1 X10 allows checks to be unsafely eliminated via compiler flags.

is internally converted into an offset into the local storage in the
place of access. By default, all indexing operations include bounds
checks (and place checks for distributed arrays); however these
checks can be explicitly disabled with a compile-time flag.

Implementation All classes in this package are implemented as
normal X10 source code (no usage of @NativeRep). The backing
storage for the data is provided by Rail.

To achieve the performance goals outlined above, the entire hot
path of the indexing operation must be fully inlined and contain no
function calls that return normally. Our experience has been that
even a single non-exceptional function call in the hot path of the
array indexing operation will result in an unacceptable loss of per-
formance for our intended use cases. Therefore we have adopted
a design pattern for both local and distributed arrays where an ab-
stract class, Array and DistArray respectively, provides bulk oper-
ations that can operate purely in terms of the backing Rail and a
collection of specialized final subclasses (e.g. Array_2 for a two-
dimensional, zero-indexed, row major array) provide the indexing
operations for each dimensionality and distribution. Application
code refers to the type of the specialized subclass, enabling full
optimization of all operations.2 Having specialized subclasses also
naturally minimizes space overheads because each subclass can de-
fine exactly the instance fields it needs to best encode its metadata.
A typical array instance in this package is a small header object
containing metadata and a pointer to a single backing Rail object
that contains the densely stored data.

Although this approach results in a proliferation of specialized
classes, each class is small and straightforward to implement. The
entire package currently only contains 900 source lines of code;
SLOC counts for selected classes are shown in table 1.

Table 1: Source Lines of Code for selected X10 array classes.

Class SLOC Count

Array 65

Array 2 87

DistArray 98

DistArray BlockBlock 2 129

We expect the lines of code will increase as additional special-
izations of Array and DistArray are implemented in this package
and as external application-specific arrays. However due to the sim-
pler APIs we expect the total lines of code to remain well below that
of the x10.regionarray package.

3.4 x10.regionarray: Flexible Arrays
Design Goals The x10.regionarray package is the most ambi-
tious of the array frameworks provided by the X10 standard li-
brary. It is descended from the early X10 array sub-languages and
supports an extremely flexible and extensible set of abstractions.
A region is a set of k-dimensional points. Supported regions vary
from simple dense rectangular spaces to complex polyhedral spaces
constructed via a rich region algebra. Local arrays are defined as a
function from points in a region to data values. Multi-place arrays
are defined via an additional level of mapping: a distribution that
maps each point in a region to a Place. Any region can be com-
bined with any distribution to define a distributed array, resulting in
a highly flexible data distribution mechanism.

2 The combination of local type inference and X10’s type definition mecha-
nism can greatly reduce the number of explicit references to the specialized
subclasses, thus making it less burdensome to switch array implementation
subclasses as the program evolves.

40



Core Implementation A standard object-oriented design was
used to implement these abstractions. Abstract Region and Dist

classes define a rich set of API methods and provide default imple-
mentations of many functions. All region and distribution instances
are created via factory methods on Region and Dist, allowing the
various implementation level subclasses to be freely changed and
specialized without requiring any changes in client code. The Array
and DistArray class are parameterized by Region and Dist in-
stances and internally most operations are implemented via calls
on the Region and Dist APIs. Additional subclasses of Region and
Dist can be defined externally to the x10.regionarray package
and used to create Array and DistArray instances.

Throughout the API and the implementation, extensive use was
made of X10’s constrained types to express usage invariants and to
allow optimized indexing methods specialized to specific ranks (di-
mensionality) to be properly applied. Internally, constrained types
were also used to specialize code paths for common cases such as
dense rectangular regions, which enabled more efficient index cal-
culation.

In total, the package contains 3,340 lines of code with approxi-
mately 500 lines in Array, 300 lines in DistArray, 1000 lines in the
implementation of distributions and 1540 in the implementation of
regions (due to the complexity of general polyhedral regions).

Extensibility Our experience is that the design did prove to be
fairly extensible and flexible. Many usage scenarios involving sub-
regions, stencils, and sophisticated distributions could be succinctly
expressed using the provided APIs and classes. When necessary,
the package could also be extended externally. For example early in
the development of ANUChem [11] an application-specific region
was used in the Fast Multipole Method to define Arrays over the
unusually-shaped regions of multipole expansions.

Discussion Although expressive and flexible, and despite sig-
nificant investment in development and optimization, the x10.

regionarray framework was never actually usable in performance-
sensitive code. The design suffered from several weaknesses that
ultimately led to the decision to provide the x10.array package as
a higher performance alternative for many common cases.

The fundamental issue is that high-performance array opera-
tions absolutely require that the indexing calculations be performed
by simple inlined code sequences that can be effectively understood
and optimized by the platform compilers. Careful design and com-
piler optimizations based on exploiting constrained types did en-
able this to be achieved in certain restricted scenarios. However,
these optimizations did not apply to the more general scenarios
(non-rectangular regions) and even with local type inference and
aggressive method inlining were vulnerable to loss of static type
information across method boundaries due to the complexity of
specifying the necessary constraints. Additional work on interpro-
cedural optimization and whole program specialization could ex-
pand the set of scenarios where acceptable performance could be
achieved. But such whole program optimization is not easily com-
patible with the usage of X10 to build libraries and frameworks or
with the Java-based Managed X10 toolchain. An important sec-
ondary issue was the higher space overheads of more complex
metadata objects and of caching derived values to optimize index-
ing operations.

4. Global Matrix Library
4.1 Design Goals
The Global Matrix Library (GML) was developed to support dis-
tributed linear algebra in X10. It provides a variety of single-place
and distributed matrix formats for dense and sparse matrices, and
implements linear algebra operations for these formats. High-level

Table 2: Matrix classes in X10 Global Matrix Library.

Storage

Locality Dense Sparse

Local DenseMatrix SparseCSC/SparseCSR

Duplicated DupDenseMatrix DupSparseMatrix

DupBlockMatrix

Distributed DistDenseMatrix DistSparseMatrix

DistBlockMatrix

operations operate on entire matrices and are intended to support
a programmer writing in a sequential style while fully exploit-
ing available parallelism. Parallelism within a node is exploited
through the use of multi-threaded implementations of the Basic
Linear Algebra Subroutines (BLAS) [3] and Linear Algebra PACK-
age (LAPACK) [2] routines. Between nodes, collective communi-
cations are used to support coarse-grained parallelism.

As well as being used directly within application code, another
important design goal for GML is to serve as a compilation target
for high-level array languages, to enable highly-parallel execution
for matrix/vector operations on large data sets. For example the
SystemML approach compiles machine learning algorithms written
in the high-level Declarative Machine Learning language (DML) to
produce MapReduce jobs for execution in Hadoop [6]; in a similar
fashion, DML could compile to X10 code with GML operations for
clustered execution.

4.2 Implementation
All matrix and vector representations implemented in GML derive
from the base classes x10.matrix.Matrix and x10.matrix.Vector

. Table 2 shows a selection of matrix classes that inherit from x10

.matrix.Matrix. Additional local representations are also imple-
mented for triangular and symmetric matrices (not shown). Matri-
ces support a set of standard operations (for example element-wise
addition and multiplication, matrix multiplication, norm, trace),
which are polymorphic with regard to representation.

Operations for single-place dense matrices are implemented as
@NativeRep wrappers around the BLAS and LAPACK routines;
more complex operations are implemented in X10 using the simple
operations as building blocks.

4.3 Usage of GML
The sequential style of GML is demonstrated through two example
linear algebra kernels to compute Non-negative Matrix Factoriza-
tion and PageRank.

Non-negative Matrix Factorization (NMF) [6, 9] is used in fields
such as topic modeling and computer vision to infer structure
within a large matrix V by finding an approximate factorization
V ⇡ WH such that the dimensions of the factor matrices are
significantly smaller than V. Figure 1 shows pseudocode and the
corresponding X10 code for NMF implemented using GML. Ma-
trices V and W are block-distributed across all places, while matrix H

is duplicated across all places.
Figure 2 shows weak scaling of NMF on 1 to 384 cores of a

Power 775 system. One X10 place was run per core, increasing
number of rows in the V matrix to maintain 312500 non-zeros per
core. The IBM ESSL library was used for the BLAS operations.

The PageRank algorithm [12] operates on a transition matrix
G representing the structure of a network of linked documents,
to find the dominant eigenvector p as a measure of the centrality
or importance of each document. Figure 3 shows pseudocode and
corresponding X10 code for an implementation of PageRank using

41



1 for (1 . . . n) do

2 H = H · (WTV / WTWH)

3 W = W · (VHT / WHHT
)

4 end for

1 for (1..n) {
2 // H
3 WtV.transMult(W, V);
4 WtW.transMult(W, W);
5 WtWH.mult(WtW , H);
6 WtV.cellDiv(WtWH);
7 H.cellMult(WtV);
8 // W
9 VHt.multTrans(V, H);

10 HHt.multTrans(H, H);
11 WHHt.mult(W, HHt);
12 VHt.cellDiv(WHHt);
13 W.cellMult(VHt);
14 }

Figure 1: Non-negative Matrix Factorization: pseudocode and X10
code using GML

 0

 200

 400

 600

 800

 1000

 0  64  128  192  256  320  384
 0

 0.2

 0.4

 0.6

 0.8

 1

tim
e 

(m
s)

pa
ra

lle
l e

ffi
ci

en
cy

cores

time (ms)
efficiency

Figure 2: X10 NMF performance on Power 775

GML. The matrices G and Gp are distributed over all places, while
the vector p is duplicated across all places.

In ANUChem [1], single-place and distributed dense matrices
and linear algebra operations are used to implement a Hartree–
Fock self-consistent field calculation using the Resolution of the
Coulomb Operator [10]. Key matrices such as the Fock matrix
are block distributed using the DistDenseMatrix class, and BLAS
operations are used on local blocks to transform auxiliary integrals
into Fock matrix contributions.

1 for (k = 1 . . . n) do

2 p = ↵Gp+ (1� ↵)EUTp

3 if (kp(k)
� p(k�1)

k1 < tolerance) break

4 end for

1 for (1..n) {
2 Gp.mult(G, p).scale(alpha);
3 Gp.copyTo(vGp); // dist ->local dense
4 vP.mult(E, U.dotProd(vP))
5 .scale(1-alpha).cellAdd(vGP);
6 p.sync(); // broadcast
7 val delta = vP.l1Norm(prevVP);
8 if (delta < tolerance) break;
9 vP.copyTo(prevVP);

10 }

Figure 3: PageRank: pseudocode and X10 code using GML

 0

 100

 200

 300

 400

 500

 600

 0  8192  16384  24576  32768
 16

 17

 18

 19

 20

 21

 22

 23

te
ra

flo
p/

s

gi
ga

flo
p/

s/
co

re

cores

589

17.98

22.38 (1 core)

20.62 (1 host)

teraflop/s
gigaflop/s/core

Figure 4: X10 HPL performance on Power 775

5. Application-specific Arrays
A goal of the X10 approach is to enable application-specific array
abstractions to easily be built. In this section we briefly describe
three successful examples of such work.

5.1 Global HPL
HPL is a standard HPC kernel benchmark which computes the LU
factorization of a large square matrix. The X10 implementation
of this benchmark features a two-dimensional block-cyclic data
distribution, a right-looking variant of the LU factorization with
row-partial pivoting, and a recursive panel factorization. The heart
of this code is an application-specific BlockedArray class which in
only 129 lines of code implements a distributed, block-block cyclic
matrix using Rail as the backing data store in each Place. Figure 4
shows the performance of HPL on a 32,768 core Power 775 system;
more details can be found in [17].

5.2 Random Access
The Global RandomAccess benchmark measures the system’s abil-
ity to update random memory locations in a table distributed across
the system, by performing XOR operations at the chosen locations
with random values. In X10, this table is implemented as a small
(78 lines of code) application-specific DistRail class. DistRail
utilizes customized memory allocation to ensure that the backing
Rail is allocated using large pages and at the same virtual address
in every Place and augments operators () and ()= with an addi-
tional remote atomic XOR operation that exploits underlying hard-
ware acceleration on systems that provide it.

5.3 MiX10
MiX10 [8] is an open MATLAB compiler that translates MAT-
LAB programs to X10. After analysis and optimization, MiX10
is able to optimize many MATLAB vectors and matrices into X10
arrays. As reported in more detail in [7], MiX10 both targets X10’s
existing x10.regionarray and x10.array classes and has defined
additional column-major, one-indexed subclasses of x10.array.

Array that are better suited for MATLAB’s linear indexing. MiX10
demonstrates that X10 provides a suitable compilation target for
high-level array based program languages and opens up a number
of interesting avenues for potential future research.

6. Related Work
A comprehensive survey of the rich history of array sub-languages
is beyond the scope of this paper. Therefore we just comment on
a few closely related efforts. The design of x10.array was driven
by an analysis of the high-performance arrays of the Fortran and
C/C++ languages and the capabilities of platform compilers to opti-
mize operations on them. PGAS languages such as UPC and Coar-
ray Fortran extend their base language with built-in distributed ar-
rays. This approach differs from ours in that the design choices for

42



the distributed arrays are codified as part of the language specifi-
cation and not easily extensible or modifiable by users. Chapel’s
user-defined domain maps represent an ambitious attempt to com-
bine compiler-supported and optimized global view distributed ar-
rays with high degrees of user extensibility [4]. Just like the x10.

regionarray package, we believe it is still an open research ques-
tion if such a flexible approach can achieve acceptable levels of
performance for general usage in numeric codes.

7. Future Directions
The goal of this paper has been to describe the current state of
array-based programming in X10, to assess what has worked well
and what could be done better, and to lay out avenues for future
work.

Based on our experience thus far, we believe the fundamental
approach taken in X10 of supporting array-based programming
through general language and toolchain capabilities for building
reusable software frameworks is sound. Arrays in X10 certainly
feel like an integral part of the language, but yet can be easily
evolved since they are primarily defined as vanilla X10 classes
using normal language mechanisms. Furthermore, the investment
in building these language and toolchain capabilities is applicable
for building many other libraries and frameworks.

We certainly see opportunities to explore more advanced con-
straint solving technology to enable compile time bounds check-
ing and the expression of data structure invariants involving arith-
metic and numeric inequalities. The development of library-level
interprocedural optimization and link-time specialization in our
toolchain could improve the performance of the x10.regionarray

package sufficiently to make it usable in more scenarios. The imple-
mentation of Rail (and other generic container types) in Managed
X10 could also be improved to reduce boxing and other object-
model overheads on boundary crossings between generic and non-
generic code.

Finally, the Global Matrix Library presents a number of oppor-
tunities. We would like to extend GML with additional operations,
apply it to more applications, and study its scalability and perfor-
mance on large scale systems. Efforts like MiX10 are also intrigu-
ing areas for future collaboration with GML: one of the original
design goals for the GML was to serve as a compilation target for
a high-level array programming language.

Acknowledgments
This material is based upon work supported by the Defense Ad-
vanced Research Projects Agency under its Agreement No. HR0011-
07-9-0002 and by the Department of Energy under award DEFOA-
0000619.

A number of members of the X10 team and user community
have contributed both ideas and code to the material presented in
this paper. We especially want to thank Bruce Lucas, Nate Nystrom,
Igor Peshansky, Vijay Saraswat, and Juemin Zhang.

All source code lines statistics were generated using David A.
Wheeler’s ‘SLOCCount’.

References
[1] ANUChem. http://cs.anu.edu.au/~Josh.Milthorpe/

anuchem.html. accessed: 10 April 2014.
[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and S. Ostrouchov.
LAPACK users’ guide, release 2.0. Technical report, SIAM, Philadel-
phia, 1995.

[3] L. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling,
G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo,
and Remington. An updated set of basic linear algebra subprograms
(BLAS). ACM Transactions on Mathematical Software, 28(2):135–
151, 2002.

[4] B. L. Chamberlain, S.-E. Choi, S. J. Deitz, D. Iten, and V. Litvinov.
Authoring user-defined domain maps in Chapel. Chapel Users Group,
May 2011.

[5] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioğlu, C. von Praun, and V. Sarkar. X10: an object-oriented ap-
proach to non-uniform cluster computing. In Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, OOPSLA ’05, pages 519–538,
New York, NY, USA, 2005. ACM.

[6] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sind-
hwani, S. Tatikonda, Y. Tian, and S. Vaithyanathan. SystemML:
declarative machine learning on MapReduce. In 2011 IEEE 27th In-
ternational Conference on Data Engineering (ICDE), pages 231–242,
Apr. 2011.

[7] V. Kumar. MiX10: Compiling MATLAB to X10 for high performance.
Master’s thesis, McGill University, April 2014.

[8] V. Kumar and L. Hendren. First steps to compiling MATLAB to X10.
In Proceedings of the Third ACM SIGPLAN X10 Workshop, X10 ’13,
pages 2–11, New York, NY, USA, 2013. ACM.

[9] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix
factorization. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors,
Advances in Neural Information Processing Systems 13, pages 556–
562. MIT Press, 2001.

[10] T. Limpanuparb, J. Milthorpe, A. Rendell, and P. Gill. Resolutions
of the Coulomb operator: VII. Evaluation of long-range Coulomb and
exchange matrices. Journal of Chemical Theory and Computation,
9(2):863–867, 2013.

[11] J. Milthorpe, V. Ganesh, A. P. Rendell, and D. Grove. X10 as a parallel
language for scientific computation: practice and experience. In Pro-
ceedings of the 25th IEEE International Parallel and Distributed Pro-
cessing Symposium, IPDPS ’11, pages 1080–1088. IEEE Computer
Society, May 2011.

[12] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation
ranking: Bringing order to the Web. Technical Report SIDL-WP-
1999-0120, Stanford University, Nov. 1999.

[13] V. Saraswat, G. Almasi, G. Bikshandi, C. Cascaval, D. Cunningham,
D. Grove, S. Kodali, I. Peshansky, and O. Tardieu. The Asynchronous
Partitioned Global Address Space Model. In AMP’10: Proceedings of
The First Workshop on Advances in Message Passing, June 2010.

[14] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove. The
X10 language specification, v2.4. Aug. 2013.

[15] V. Saraswat and R. Jagadeesan. Concurrent clustered programming.
In Concur’05, pages 353–367, 2005.

[16] V. Saraswat, O. Tardieu, D. Grove, D. Cunningham, M. Takeuchi,
and B. Herta. A brief introduction to X10 (for the high performance
programmer). http://x10.sourceforge.net/documentation/
intro/latest/html/, Feb. 2013.

[17] O. Tardieu, B. Herta, D. Cunningham, D. Grove, P. Kambadur,
V. Saraswat, A. Shinnar, M. Takeuchi, and M. Vaziri. X10 and APGAS
at petascale. In Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’14, pages
53–66, New York, NY, USA, 2014. ACM.

43


